Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Libyan J Med ; 16(1): 1994741, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34720069

ABSTRACT

The extracellular matrix (ECM) disruption and cytoskeleton reorganization are crucial events in tumor proliferation and invasion. E-Cadherin (E-CAD) is a member of cell adhesion molecules involved in cell-cell junctions and ECM stability. The loss of E-CAD expression is associated with cancer progression and metastasis. This retrospective study aimed to assess E-CAD protein expression in ovarian cancer (OC) tissues and to evaluate its prognostic value. PATIENTS AND METHODS: 143 formalin-fixed and paraffin-embedded (FFPE) blocks of primary advanced stages OC were retrieved and used to construct Tissue microarrays. Automated immunohistochemistry technique was performed to evaluate E-CAD protein expression patterns in OC. RESULTS: E-CAD protein expression was significantly correlated with OC histological subtype (p < 0.0001), while borderline significant correlations were observed with both tumor grade (p = 0.06) and stage (p = 0.07). Interestingly, Kaplan-Meier survival analysis showed that OC patients with membranous E-CAD expression survived longer than those with no E-CAD expression mainly those at advanced stages (p < 0.009). Further in silico analysis confirms the key roles of E-CAD in OC molecular functions. CONCLUSION: we reported a prognosis value of membranous E-CAD in advanced stage OC patients. Further validation using larger cohorts is recommended to extract clinically relevant outcomes towards better OC management and individualized oncology.


Subject(s)
Biomarkers, Tumor , Ovarian Neoplasms , Antigens, CD , Cadherins , Carcinoma, Ovarian Epithelial , Female , Humans , Prognosis , Retrospective Studies , Saudi Arabia
2.
Pak J Pharm Sci ; 32(2): 521-528, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31081761

ABSTRACT

The purpose of the current study was to examine immobilization stress-induced antioxidant defense changes and estimation of the antioxidant potential of pre and post stress treatment of aqueous garlic extract in rat's liver. For this purpose, male Albino Wistar rats were treated with aqueous garlic extract both pre and after 6 h of immobilization stress. Pro-oxidant status of rat liver was evaluated by determining the levels of reduced glutathione (GSH), thiobarbituric acid reactive substances (TBARS), aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), glucose, uric acid and the activities of super oxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST). In response to 6 h of immobilization stress a significant rise in the level of above mentioned liver enzymes were recorded. However, SOD, CAT and GST enzymatic activities showed a sharp decline. The extract treatment before and after stress, almost reverted the activities of studied biochemical parameters towards their control values. Current study highlighted the antioxidant potential of garlic extracts. Based on our study, we recommend the use of garlic extract as nutritional supplement for combating oxidative stress induced damage.


Subject(s)
Garlic/chemistry , Liver/drug effects , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Protective Agents/pharmacology , Animals , Antioxidants/metabolism , Enzymes/pharmacology , Glucose/metabolism , Glutathione/metabolism , Liver/metabolism , Male , Oxidative Stress/physiology , Rats, Wistar , Restraint, Physical
3.
Front Cell Dev Biol ; 7: 380, 2019.
Article in English | MEDLINE | ID: mdl-32010693

ABSTRACT

Osteoarthritis (OA) is a chronic degenerative joint disorder associated with degradation and decreased production of the extracellular matrix, eventually leading to cartilage destruction. Limited chondrocyte turnover, structural damage, and prevailing inflammatory milieu prevent efficient cartilage repair and restoration of joint function. In the present study, we evaluated the role of secreted cytokines, chemokines, and growth factors present in the culture supernatant obtained from an ex vivo osteochondral model of cartilage differentiation using cartilage pellets (CP), bone marrow stem cells (BM-MSCs), and/or BM-MSCs + CP. Multiplex cytokine analysis showed differential secretion of growth factors (G-CSF, GM-CSF, HGF, EGF, VEGF); chemokines (MCP-1, MIP1α, MIP1ß, RANTES, Eotaxin, IP-10), pro-inflammatory cytokines (IL-1ß, IL-2, IL-5, IL-6, IL-8, TNFα, IL-12, IL-15, IL-17) and anti-inflammatory cytokines (IL-4, IL-10, and IL-13) in the experimental groups compared to the control. In silico analyses of the role of stem cells and CP in relation to the expression of various molecules, canonical pathways and hierarchical cluster patterns were deduced using the Ingenuity Pathway Analysis (IPA) software (Qiagen, United States). The interactions of the cytokines, chemokines, and growth factors that are involved in the cartilage differentiation showed that stem cells, when used together with CP, bring about a favorable cell signaling that supports cartilage differentiation and additionally helps to attenuate inflammatory cytokines and further downstream disease-associated pro-inflammatory pathways. Hence, the autologous or allogeneic stem cells and local cartilage tissues may be used for efficient cartilage differentiation and the management of OA.

4.
Genes Genomics ; 40(11): 1149-1155, 2018 11.
Article in English | MEDLINE | ID: mdl-30315519

ABSTRACT

Epileptic encephalopathies are genetically heterogeneous disorders which leads to epilepsy and cause neurological disorders. Seizure threshold 2 (SZT2) gene located on chromosome 1p34.2 encodes protein mainly expressed predominantly in the parietal and frontal cortex and dorsal root ganglia in the brain. Previous studies in mice showed that mutation in this gene can confers low seizure threshold, enhance epileptogenesis and in human may leads to facial dysmorphism, intellectual disability, seizure and macrocephaly. Objective of this study was to find out novel gene or novel mutation related to the gene phenotype. We have identified a large consanguineous Saudi family segregating developmental delay, intellectual disability, epilepsy, high forehead and macrocephaly. Exome sequencing was performed in affected siblings of the family to study the novel mutation. Whole exome sequencing data analysis, confirmed by subsequent Sanger sequencing validation study. Our results showed a novel homozygous mutation (c.9368G>A) in a substitution of a conserved glycine residue into a glutamic acid in the exon 67 of SZT2 gene. The mutation was ruled out in 100 unrelated healthy controls. The missense variant has not yet been reported as pathogenic in literature or variant databases. In conclusion, the here detected homozygous SZT2 variant might be the causative mutation that further explain epilepsy and developmental delay in this Saudi family.


Subject(s)
Developmental Disabilities/complications , Epilepsy/genetics , Megalencephaly/complications , Mutation, Missense , Nerve Tissue Proteins/genetics , Child , Child, Preschool , Electroencephalography , Epilepsy/complications , Epilepsy/physiopathology , Female , Homozygote , Humans , Saudi Arabia
5.
Semin Cancer Biol ; 44: 117-131, 2017 06.
Article in English | MEDLINE | ID: mdl-28188828

ABSTRACT

Metastasis is the spread and growth of localized cancer to new locations in the body and is considered the main cause of cancer-related deaths. Metastatic cancer cells display distinct genomic and epigenomic profiles and almost universally an aggressive pathophysiology. A better understanding of the molecular mechanisms and regulation of metastasis, including how metastatic tumors grow and survive in the nascent niche and the interactions of the emergent metastatic cancer cells within the local microenvironment may provide tools to design strategies to restrict metastatic dissemination. Aberrant microRNAs (miRNA) expression has been reported in metastatic cancer cells. MicroRNAs are known to regulate divergent and/or convergent metastatic gene pathways including activation of reprogramming switches during metastasis. An in-depth understanding of role of miRNAs in the metastatic cascade may lead to the identification of novel targets for anti-metastatic therapeutics as well as potential candidate miRNAs for cancer treatment. This review primarily focuses on the role of miRNAs in the mechanisms of cancer metastasis as well as implications for metastatic cancer treatment.


Subject(s)
MicroRNAs/genetics , Neoplasm Metastasis/therapy , Neoplasms/therapy , Gene Expression Regulation, Neoplastic , Genomics , Humans , Neoplasm Metastasis/genetics , Neoplasms/genetics , Neoplasms/pathology
6.
Braz. arch. biol. technol ; 60: e17160311, 2017. tab, graf
Article in English | LILACS | ID: biblio-951435

ABSTRACT

ABSTRACT This review article highlights the role of glutaraldehyde as a matrix activator/stabilizer in imparting higher operational and thermal stability to β-galactosidase (βG) for biotechnological applications. Glutaraldehyde has been used extensively as a crosslinking agent as well as for functionalization of matrices to immobilize β-galactosidase. Immobilized β-galactosidase systems (IβGS) obtained as a result of glutaraldehyde treatment has been employed to hydrolyze whey and milk lactose in batch reactors, continuous packed-bed and fluidized bed reactors under various operational conditions. Moreover, these IβGS have also been utilized for the production of galactooligosaccharides in food, dairy and fermentation industries. It was observed that glutaraldehyde provided remarkable stability to immobilize βG against various physical/chemical denaturants, thus enhancing thermal/operational stability and rendering it more suitable for repeated utilization in industrial scale operations.

7.
Iran J Biotechnol ; 14(3): 130-141, 2016 Sep.
Article in English | MEDLINE | ID: mdl-28959329

ABSTRACT

CONTEXT: The use of nanotechnology in medicine and more specifically drug delivery is set to spread rapidly. Currently many substances are under investigation for drug delivery and more specifically for cancer therapy. EVIDENCE ACQUISITION: Nanodiamonds (NDs) have contributed significantly in the development of highly efficient and successful drug delivery systems, and in stem cell therapy. Drug delivery through NDs is an intricate and complex process that deserves special attention to unravel underlying molecular mechanisms in order to overcome certain bottlenecks associated with it. It has already been established that NDs based drug delivery systems have excellent biocompatibility, nontoxicity, photostability and facile surface functionalization properties. RESULTS: There is mounting evidence that suggests that such conjugated delivery systems well retain the properties of nanoparticles like small size, large surface area to volume ratio that provide greater biocatalytic activity to the attached drug in terms of selectivity, loading and stability. CONCLUSIONS: NDs based drug delivery systems may form the basis for the development of effective novel drug delivery vehicles with salient features that may facilitate their utility in fluorescence imaging, target specificity and sustainedrelease.

8.
Expert Opin Ther Targets ; 19(12): 1705-23, 2015.
Article in English | MEDLINE | ID: mdl-26189482

ABSTRACT

INTRODUCTION: MicroRNAs (miRNAs) are small (19 - 22 nucleotide), non-protein-coding RNA segments that function as master regulators of hundreds of genes simultaneously in both normal and malignant cells. In colorectal cancer (CRC) miRNAs are deregulated and have critical roles in initiation and progression of CRC by interacting with various oncogenes and tumor suppressor genes including APC, KRAS and p53, or by modulating downstream signal transduction pathways. Numerous promising miRNAs have emerged as potential drug targets for therapeutic intervention and possible candidates for replacement therapy in CRC. AREAS COVERED: In this review the authors summarize the available information on miRNAs and their role in CRC. The authors point out specific miRNAs as potential drug targets and those having a significant role in gene activation and gene silencing during the process of CRC development, to highlight their importance as possible therapeutic candidates for the treatment of CRC. EXPERT OPINION: Targeting miRNAs provides an emerging opportunity to develop effective miRNA-based replacement therapy or antagonists to alter expression in colon cancer patient tumors. However, the biggest challenge is to overcome obstacles associated with pharmacokinetics, delivery and toxicity in order to translate the potential of miRNAs into efficacious anticancer drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , MicroRNAs/genetics , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Disease Progression , Gene Silencing , Genes, Tumor Suppressor/physiology , Humans , Molecular Targeted Therapy , Oncogenes/physiology , Signal Transduction/genetics
9.
Article in English | MEDLINE | ID: mdl-24665335

ABSTRACT

The prophylactic or curative antioxidant efficacy of crude extract and the active constituent of S. nigrum leaves were evaluated in modulating inherent antioxidant system altered due to immobilization stress in rat brain tissues, in terms of measurement of glutathione (GSH), lipid peroxidation (thiobarbituric acid reactive substances, TBARS), and free radical scavenging enzymes activities. Rats were treated with single dose of crude extract of S. nigrum prior to and after 6 h of immobilization stress exposure. Exposure to immobilization stress resulted in a decrease in the brain levels of glutathione, SOD, GST, and catalase, with an increase in thiobarbituric acid reactive substances (TBARS) levels. Treatment of S. nigrum extract and its active constituents to both pre- and poststressed rats resulted in significant modulation in the above mentioned parameters towards their control values with a relative dominance by the latter. Brain is vulnerable to stress induced prooxidant insult due to high levels of fat content. Thus, as a safe herbal medication the S. nigrum leaves extract or its isolated constituents can be used as nutritional supplement for scavenging free radicals generated in the brain due to physical or psychological stress or any neuronal diseases per se.

SELECTION OF CITATIONS
SEARCH DETAIL
...