Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(22)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36431719

ABSTRACT

In the present report, we synthesized highly porous 1D nanobelt-like cobalt phosphate (Co2P2O7) materials using a hydrothermal method for supercapacitor (SC) applications. The physicochemical and electrochemical properties of the synthesized 1D nanobelt-like Co2P2O7 were investigated using X-ray diffraction (XRD), X-ray photoelectron (XPS) spectroscopy, and scanning electron microscopy (SEM). The surface morphology results indicated that the deposition temperatures affected the growth of the 1D nanobelts. The SEM revealed a significant change in morphological results of Co2P2O7 material prepared at 150 °C deposition temperature. The 1D Co2P2O7 nanobelt-like nanostructures provided higher electrochemical properties, because the resulting empty space promotes faster ion transfer and improves cycling stability. Moreover, the electrochemical performance indicates that the 1D nanobelt-like Co2P2O7 electrode deposited at 150 °C deposition temperature shows the maximum specific capacitance (Cs). The Co2P2O7 electrode prepared at a deposition temperature 150 °C provided maximum Cs of 1766 F g-1 at a lower scan rate of 5 mV s-1 in a 1 M KOH electrolyte. In addition, an asymmetric hybrid Co2P2O7//AC supercapacitor device exhibited the highest Cs of 266 F g-1, with an excellent energy density of 83.16 Wh kg-1, and a power density of 9.35 kW kg-1. Additionally, cycling stability results indicate that the 1D nanobelt-like Co2P2O7 material is a better option for the electrochemical energy storage application.

2.
Chem Commun (Camb) ; 51(81): 15012-4, 2015 Oct 18.
Article in English | MEDLINE | ID: mdl-26311303

ABSTRACT

A facile unipolar pulse electrodeposition combined with the thermal oxidation method was applied for fabrication of CuO/Co3O4 composites on carbon electrode for water electrolysis, and it was found that the sea anemone-like one with a 3D hierarchical structure formed at -0.8 V exhibited excellent performance for water electrolysis at a low overpotential with high stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...