Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(5): 051002, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38364164

ABSTRACT

We present the measurement of the cosmic ray proton spectrum from 50 TeV to 1.3 PeV using 7.81×10^{6} extensive air shower events recorded by the ground-based GRAPES-3 experiment between 1 January 2014 and 26 October 2015 with a live time of 460 day. Our measurements provide an overlap with direct observations by satellite and balloon-based experiments. The electromagnetic and muon components in the shower were measured by a dense array of plastic scintillator detectors and a tracking muon telescope, respectively. The relative composition of the proton primary from the air shower data containing all primary particles was extracted using the multiplicity distribution of muons which is a sensitive observable for mass composition. The observed proton spectrum suggests a spectral hardening at ∼166 TeV and disfavors a single power law description of the spectrum up to the Knee energy (∼3 PeV).

2.
Acta Biomater ; 136: 199-209, 2021 12.
Article in English | MEDLINE | ID: mdl-34587524

ABSTRACT

Platelets are a reservoir of growth factors, cytokines and chemokines involved in spontaneous wound repair. In this study, a platelet-rich and fibrin-rich hydrogel was generated from expired platelet components that would have otherwise been transfused. The material contained physiological concentrations of transforming growth factor ß1 (TGF-ß1, platelet-derived growth factor AB (PDGF-AB), PDGF-BB, insulin-like growth factor-1 (IGF-1), fibroblast growth factor 2 (FGF-2), and epidermal growth factor (EGF). The effect of the hydrogel on wound repair was investigated in SKH-1 mice. Full thickness dorsal wounds were created on the mice and treated with the hydrogel at various concentrations. Immunohistochemical staining with CD31 (endothelial cell marker) revealed that wounds treated with the hydrogel showed significantly enhanced vascularisation in the wound bed. Moreover, high levels of interleukin-6 (IL-6) and KC (IL-8 functional homologue) in treated wounds were sustained over a longer period of time, compared to untreated wounds. We postulate that sustained IL-6 is a driver, at least partly, of enhanced vascularisation in full thickness wounds treated with the hydrogel. Future work is needed to explore whether this hydrogel can be utilised as a treatment option when vascularisation is a critical limitation. STATEMENT OF SIGNIFICANCE: The economic cost of wound repair is estimated in billions of dollars each year. In many cases time required to vascularise wounds is a major contributor to slow wound repair. In this study, we developed a blood-derived platelet- and fibrin-rich hydrogel. It contains a number of growth factors actively involved in spontaneous wound healing. This hydrogel significantly improved dermal repair and vascularisation in a full-thickness wound mouse model. This study provides an action mechanism for modulation of localised inflammation.


Subject(s)
Blood Platelets , Hydrogels , Animals , Becaplermin , Epidermal Growth Factor , Hydrogels/pharmacology , Mice , Wound Healing
3.
Phys Rev Lett ; 122(10): 105101, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30932668

ABSTRACT

The GRAPES-3 muon telescope located in Ooty, India records rapid (∼10 min) variations in the muon intensity during major thunderstorms. Out of a total of 184 thunderstorms recorded during the interval of April 2011-December 2014, the one on December 1, 2014 produced a massive potential of 1.3 GV. The electric field measured by four well-separated (up to 6 km) monitors on the ground was used to help estimate some of the properties of this thundercloud, including its altitude and area that were found to be 11.4 km above mean sea level and ≥380 km^{2}, respectively. A charging time of 6 min to reach 1.3 GV implied the delivery of a power of ≥2 GW by this thundercloud that was moving at a speed of ∼60 km h^{-1}. This work possibly provides the first direct evidence for the generation of gigavolt potentials in thunderclouds that could also possibly explain the production of highest-energy (100 MeV) gamma rays in the terrestrial gamma-ray flashes.

4.
Phys Rev Lett ; 117(17): 171101, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27824449

ABSTRACT

The GRAPES-3 tracking muon telescope in Ooty, India measures muon intensity at high cutoff rigidities (15-24 GV) along nine independent directions covering 2.3 sr. The arrival of a coronal mass ejection on 22 June 2015 18:40 UT had triggered a severe G4-class geomagnetic storm (storm). Starting 19:00 UT, the GRAPES-3 muon telescope recorded a 2 h high-energy (∼20 GeV) burst of galactic cosmic rays (GCRs) that was strongly correlated with a 40 nT surge in the interplanetary magnetic field (IMF). Simulations have shown that a large (17×) compression of the IMF to 680 nT, followed by reconnection with the geomagnetic field (GMF) leading to lower cutoff rigidities could generate this burst. Here, 680 nT represents a short-term change in GMF around Earth, averaged over 7 times its volume. The GCRs, due to lowering of cutoff rigidities, were deflected from Earth's day side by ∼210° in longitude, offering a natural explanation of its night-time detection by the GRAPES-3. The simultaneous occurrence of the burst in all nine directions suggests its origin close to Earth. It also indicates a transient weakening of Earth's magnetic shield, and may hold clues for a better understanding of future superstorms that could cripple modern technological infrastructure on Earth, and endanger the lives of the astronauts in space.

SELECTION OF CITATIONS
SEARCH DETAIL
...