Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Sci Food Agric ; 102(10): 4097-4108, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-34997578

ABSTRACT

BACKGROUND: Cow ghee is one of the expensive edible fats in the dairy sector. Ghee is often adulterated with low-priced edible oils, like soybean oil, owing to its high market demand. The existing adulteration detection methods are time-consuming, requiring sample preparation and expertise in these fields. The possibility of detecting soybean oil adulteration (from 10% to 100%) in pure cow ghee was investigated in this study. The fingerprint information of volatile compounds was collected using a flash gas chromatography electronic nose (FGCEN) instrument. The classification results were studied using the pattern recognition chemometric models principal component analysis (PCA), soft independent modelling of class analogy (SIMCA), and discriminant function analysis (DFA). RESULTS: The most powerful fingerprint odor of all the samples identified from FGCEN analysis was acetaldehyde (Z)-4-heptenal, 2-propanol, ethyl propanoate, and pentan-2-one. The odor analysis investigation was accomplished with an average analysis time of 90 s. A clear differentiation of all the samples with an excellent classification accuracy of more than 99% was achieved with the PCA and DFA chemometric methods. However, the results of the SIMCA model showed that SIMCA could only be used to detect ghee adulteration at higher concentration levels (30% to 100%). The validation study shows good agreement between FGCEN and gas chromatography-mass spectrometry methods. CONCLUSION: The methodology demonstrated coupled with PCA and DFA methods for adulteration detection in ghee using FGCEN apparatus has been an efficient and convenient technique. This study explored the capability of the FGCEN instrument to tackle the adulteration problems in ghee. © 2022 Society of Chemical Industry.


Subject(s)
Ghee , Animals , Cattle , Chemometrics , Electronic Nose , Female , Food Contamination/analysis , Gas Chromatography-Mass Spectrometry , Ghee/analysis , Milk/chemistry , Soybean Oil
2.
J Food Sci Technol ; 56(7): 3524-3533, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31274920

ABSTRACT

Post-harvest hydrothermal processing of grains are targeted at improving milling performances and nutritional properties. In this study, the effects of two hydrothermal processes, namely steam parboiling and soaking in boiling water for different durations on properties of buckwheat (Fagopyrum esculentum L.) grown in the Indian Himalayan regions were assessed. Both treatments significantly improved milling yield. Changes in grain section morphology were evidenced under scanning electron microscope. Milder processing for 5 and 10 min mostly exerted annealing effect, represented by increased intensities of X-ray diffraction peaks. Starch gelatinization occurred upon prolonged processing for 15 and 20 min. This resulted in decreased crystallinity, increased sedimentation volume, paste thinning during rapid viscosity analysis and lower thermal transition in differential scanning calorimetry. Marginal changes in oil uptake suggested limited protein denaturation. Natural antioxidant compounds were variably denatured. Maillard browning was indicated by CIE L* a* b* colour and antioxidant levels. The starchy flour samples showed partial resistance to enzymatic amylolysis post retrogradation. Soaking in boiling water can be considered as a feasible alternative to conventional steam parboiling for better milling yield of buckwheat. Altered physicochemical and nutritional properties of buckwheat suggested that the hydrothermally modified flours can be used in ready to eat therapeutic food products.

SELECTION OF CITATIONS
SEARCH DETAIL
...