Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
2.
Anim Genet ; 51(5): 829-832, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32657488

ABSTRACT

Epidermolysis bullosa simplex (EBS) is a hereditary blistering disease affecting the skin and mucous membranes. It has been reported in humans, cattle, buffaloes and dogs, but so far not in cats. In humans, EBS is most frequently caused by variants in the KRT5 or KRT14 genes. Here, we report a case of feline epidermolysis bullosa simplex and describe the causative genetic variant. An 11-month-old male domestic shorthair cat presented with a history of sloughed paw pads and ulcerations in the oral cavity and inner aspect of the pinnae, starting a few weeks after birth. Clinical and histopathological findings suggested a congenital blistering disease with a split formation within the basal cell layer of the epidermis and oral mucous epithelium. The genetic investigation revealed a homozygous nonsense variant in the KRT14 gene (c.979C>T, p.Gln327*). Immunohistochemistry showed a complete absence of keratin 14 staining in all epithelia present in the biopsy. To the best of our knowledge, this is the first report of feline EBS, and the first report of a spontaneous pathogenic KRT14 variant in a non-human species. The homozygous genotype in the affected cat suggests an autosomal recessive mode of inheritance.


Subject(s)
Cat Diseases/genetics , Epidermolysis Bullosa Simplex/veterinary , Keratin-14/genetics , Animals , Cat Diseases/pathology , Cats , Codon, Nonsense , Epidermolysis Bullosa Simplex/genetics , Epidermolysis Bullosa Simplex/pathology , Keratin-14/metabolism , Male
3.
Anim Genet ; 51(1): 78-86, 2020 02.
Article in English | MEDLINE | ID: mdl-31802524

ABSTRACT

In the past two decades, average litter size (ALS) in Entlebucher Mountain dogs decreased by approximately 0.8 puppies. We conducted a GWAS for ALS using the single-step methodology to take advantage of 1632 pedigree records, 892 phenotypes and 372 genotypes (173 662 markers) for which only 12% of the dogs had both phenotypes and genotypes available. Our analysis revealed associations towards the growth differentiation factor 9 gene (GDF9), which is known to regulate oocyte maturation. The trait heritability was estimated at 43.1%, from which approximately 15% was accountable by the GDF9 locus alone. Therefore, markers flanking GDF9 explained approximately 6.5% of the variance in ALS. Analysis of WGSs revealed two missense substitutions in GDF9, one of which (g.11:21147009G>A) affected a highly conserved nucleotide in vertebrates. The derived allele A was validated in 111 dogs and shown to be associated with decreased ALS (-0.75 ± 0.22 puppies per litter). The variant was further predicted to cause a proline to serine substitution. The affected residue was immediately followed by a six-residue deletion that is fixed in the canine species but absent in non-canids. We further confirmed that the deletion is prevalent in the Canidae family by sequencing three species of wild canids. Since canids uniquely ovulate oocytes at the prophase stage of the first meiotic division, requiring maturation in the oviduct, we conjecture that the amino acid substitution and the six-residue deletion of GDF9 may serve as a model for insights into the dynamics of oocyte maturation in canids.


Subject(s)
Dogs/genetics , Growth Differentiation Factor 9/genetics , Litter Size/genetics , Mutation, Missense , Amino Acid Sequence , Animals , Breeding , Female , Genetic Association Studies/veterinary , Genotype , Male , Pedigree , Phenotype
4.
Anim Genet ; 51(1): 137-140, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31729778

ABSTRACT

Black and tan animals have tan-coloured ventral body surfaces separated by sharp boundaries from black-coloured dorsal body surfaces. In the at mouse mutant, a retroviral 6 kb insertion located in the hair cycle-specific promoter of the murine Asip gene encoding agouti signalling protein causes the black and tan phenotype. In rabbits, three ASIP alleles are thought to exist, including an at allele causing a black and tan coat colour that closely resembles the mouse black and tan phenotype. The goal of our study was to identify the functional genetic variant causing the rabbit at allele. We performed a WGS-based comparative analysis of the ASIP gene in one black and tan and three wt agouti-coloured rabbits. The analysis identified 75 at -associated variants including an 11 kb deletion. The deletion is located in the region of the hair cycle-specific ASIP promoter and thus in a region homologous to the site of the retroviral insertion causing the at allele in mice. We observed perfect association of the genotypes at this deletion with the coat colour phenotype in 49 rabbits. The comparative analysis and the previous knowledge about the regulation of ASIP expression suggest that the 11 kb deletion is the most likely causative variant for the black and tan phenotype in rabbits.


Subject(s)
Agouti Signaling Protein/genetics , Exons , Hair Color/genetics , Promoter Regions, Genetic , Rabbits/genetics , Sequence Deletion , Alleles , Animals , Phenotype
5.
Anim Genet ; 50(6): 768-771, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31571289

ABSTRACT

Congenital hemidysplasia with ichthyosiform nevus and limb defects syndrome in humans is a genodermatosis characterized by inflammatory linear verrucous epidermal nevi (ILVEN), often showing a striking lateralization pattern. It is caused by variants in the NSDHL gene encoding a 3ß-hydroxysteroid dehydrogenase involved in the cholesterol biosynthesis pathway. In the present study, we investigated a female Chihuahua, which showed clinical and histological signs of ILVEN. We performed a candidate gene analysis in the affected animal. This analysis revealed a single missense variant in the NSDHL gene in the affected dog (XM_014111859.2:c.700G>A). The variant is predicted to cause a non-conservative amino acid change from glycine to arginine, XP_013967334.1:p.(Gly234Arg). The mutant allele was absent from WGS data of 594 genetically diverse dogs and eight wolves. Sanger sequencing confirmed that the variant was heterozygous in the affected dog and absent from 22 control Chihuahuas. Based on the knowledge about the functional impact of NSDHL variants in dogs and other species, c.700G>A is probably pathogenic and a convincing candidate causative variant for the observed skin lesions in the affected Chihuahua.


Subject(s)
3-Hydroxysteroid Dehydrogenases/genetics , Dog Diseases/genetics , Mutation, Missense , Nevus, Sebaceous of Jadassohn/veterinary , Animals , Dogs , Female , Heterozygote , Humans , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/veterinary , Nevus, Sebaceous of Jadassohn/genetics , Skin Neoplasms/genetics , Skin Neoplasms/veterinary
6.
Anim Genet ; 50(6): 695-704, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31486122

ABSTRACT

The domestic dog serves as an excellent model to investigate the genetic basis of disease. More than 400 heritable traits analogous to human diseases have been described in dogs. To further canine medical genetics research, we established the Dog Biomedical Variant Database Consortium (DBVDC) and present a comprehensive list of functionally annotated genome variants that were identified with whole genome sequencing of 582 dogs from 126 breeds and eight wolves. The genomes used in the study have a minimum coverage of 10× and an average coverage of ~24×. In total, we identified 23 133 692 single-nucleotide variants (SNVs) and 10 048 038 short indels, including 93% undescribed variants. On average, each individual dog genome carried ∼4.1 million single-nucleotide and ~1.4 million short-indel variants with respect to the reference genome assembly. About 2% of the variants were located in coding regions of annotated genes and loci. Variant effect classification showed 247 141 SNVs and 99 562 short indels having moderate or high impact on 11 267 protein-coding genes. On average, each genome contained heterozygous loss-of-function variants in 30 potentially embryonic lethal genes and 97 genes associated with developmental disorders. More than 50 inherited disorders and traits have been unravelled using the DBVDC variant catalogue, enabling genetic testing for breeding and diagnostics. This resource of annotated variants and their corresponding genotype frequencies constitutes a highly useful tool for the identification of potential variants causative for rare inherited disorders in dogs.


Subject(s)
Dogs/genetics , Whole Genome Sequencing , Wolves/genetics , Animals , Disease Models, Animal , Genes, Lethal , Phylogeny
7.
Anim Genet ; 50(6): 761-763, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31463981

ABSTRACT

White spotting phenotypes in horses may be caused by developmental alterations impairing melanoblast differentiation, survival, migration and/or proliferation. Candidate genes for white-spotting phenotypes in horses include EDNRB, KIT, MITF, PAX3 and TRPM1. We investigated a German Riding Pony with a sabino-like phenotype involving extensive white spots on the body together with large white markings on the head and almost completely white legs. We obtained whole genome sequence data from this horse. The analysis revealed a heterozygous 1273-bp deletion spanning parts of intron 2 and exon 3 of the equine KIT gene (Chr3: 79 579 925-79 581 197). We confirmed the breakpoints of the deletion by PCR and Sanger sequencing. Knowledge of the functional impact of similar KIT variants in horses and other species suggests that this deletion represents a plausible candidate causative variant for the white-spotting phenotype. We propose the designation W28 for the mutant allele.


Subject(s)
Hair Color , Horses/genetics , Stem Cell Factor/genetics , Animals , Exons
8.
Anim Genet ; 50(5): 546-549, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31365140

ABSTRACT

The Ehlers-Danlos syndromes (EDSs) are a heterogeneous group of inherited connective tissue disorders characterized by skin hyperextensibility, joint hypermobility and tissue fragility. Inherited disorders similar to human EDS have been reported in different mammalian species. In the present study, we investigated a female mixed-breed dog with clinical signs of EDS. Whole-genome sequencing of the affected dog revealed two missense variants in the TNXB gene, encoding the extracellular matrix protein tenascin XB. In humans, TNXB genetic variants cause classical-like EDS or the milder hypermobile EDS. The affected dog was heterozygous at both identified variants. Each variant allele was transmitted from one of the case's parents, consistent with compound heterozygosity. Although one of the variant alleles, XM_003431680.3:c.2012G>A, p.(Ser671Asn), was private to the family of the affected dog and absent from whole-genome sequencing data of 599 control dogs, the second variant allele, XM_003431680.3:c.2900G>A, p.(Gly967Asp), is present at a low frequency in the Chihuahua and Poodle population. Given that TNXB is a functional candidate gene for EDS, we suggest that compound heterozygosity for the identified TNXB variants may have caused the EDS-like phenotype in the affected dog. Chihuahuas and Poodles should be monitored for EDS cases, which might confirm the hypothesized pathogenic effect of the segregating TNXB variant.


Subject(s)
Dog Diseases/genetics , Ehlers-Danlos Syndrome/genetics , Mutation, Missense , Tenascin/genetics , Animals , Dogs , Female , Heterozygote
9.
Toxicol In Vitro ; 60: 116-124, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31108125

ABSTRACT

Cytochrome P450 enzymes (CYPs) of the equine CYP3A subfamily are predominantly involved in drug metabolism. In this study, genetic variants of the equine CYP3A94, CYP3A95, and CYP3A97 were identified and characterized using in silico modeling and in vitro enzyme kinetics. The genomes of 81 horses were sequenced to obtain the genetic variants. Structural CYP modifications of the most frequent variants were analyzed in silico using the 3D-structures predicted by homology modeling. Enzyme kinetic analyses were performed using testosterone as substrate. Twenty genetic variants were found including five missense variants (CYP3A94:p.Asp217Asn, CYP3A95:p.Asp214His, CYP3A95:p.Ser392Thr, CYP3A97:p.Ile119Thr, CYP3A97:p.Met500Val) with a higher percentage of minor allele frequency (MAF) (range 0.2-0.4). A splice-site variant (c.798 + 1G > A) in CYP3A94, likely to generate a truncated protein, was found in 50% of the horses. CYP3A94:p.Asp217Asn and CYP3A95:p.Asp214His were localized on the CYP F-α-helix, an important region for the substrate interactions in the human CYP3A4. Testosterone 2ß-hydroxylation was diminished in CYP3A94217Asn and CYP3A95392Thr. Ketoconazole inhibited 2ß-hydroxylation differently in the five variants with the most pronounced inhibition obtained for CYP3A95392Thr. In vitro and in silico analyses of genetic variants allow unraveling structural features in equine CYPs that correlate with changes in the CYP activity.


Subject(s)
Cytochrome P-450 CYP3A/genetics , Horses/genetics , Animals , Computer Simulation , Cytochrome P-450 CYP3A/metabolism , Genetic Variation , Isoenzymes/genetics , Isoenzymes/metabolism , Microsomes/metabolism , Models, Molecular , Sf9 Cells , Testosterone/metabolism
10.
Anim Genet ; 50(2): 172-174, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30644113

ABSTRACT

White spotting phenotypes in horses are highly valued in some breeds. They are quite variable and may range from the common white markings up to completely white horses. EDNRB, KIT, MITF, PAX3 and TRPM1 represent known candidate genes for white spotting phenotypes in horses. For the present study, we investigated an American Paint Horse family segregating a phenotype involving white spotting and blue eyes. Six of eight horses with the white-spotting phenotype were deaf. We obtained whole-genome sequence data from an affected horse and specifically searched for structural variants in the known candidate genes. This analysis revealed a heterozygous ~63-kb deletion spanning exons 6-9 of the MITF gene (chr16:21 503 211-21 566 617). We confirmed the breakpoints of the deletion by PCR and Sanger sequencing. PCR-based genotyping revealed that all eight available affected horses from the family carried the deletion. The finding of an MITF variant fits well with the syndromic phenotype involving both depigmentation and an increased risk for deafness and corresponds to human Waardenburg syndrome type 2A. Our findings will enable more precise genetic testing for depigmentation phenotypes in horses.


Subject(s)
Deafness/veterinary , Gene Deletion , Horse Diseases/genetics , Horses/genetics , Microphthalmia-Associated Transcription Factor/genetics , Animals , Color , Deafness/genetics , Female , Male , Microphthalmia-Associated Transcription Factor/metabolism , Pigmentation/genetics , Risk Factors , Whole Genome Sequencing/veterinary
11.
Anim Genet ; 50(1): 97-100, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30444027

ABSTRACT

Major characteristics of coat variation in dogs can be explained by variants in only a few genes. Until now, only one missense variant in the KRT71 gene, p.Arg151Trp, has been reported to cause curly hair in dogs. However, this variant does not explain the curly coat in all breeds as the mutant 151 Trp allele, for example, is absent in Curly Coated Retrievers. We sequenced the genome of a Curly Coated Retriever at 22× coverage and searched for variants in the KRT71 gene. Only one protein-changing variant was present in a homozygous state in the Curly Coated Retriever and absent or present in a heterozygous state in 221 control dogs from different dog breeds. This variant, NM_001197029.1:c.1266_1273delinsACA, was an indel variant in exon 7 that caused a frameshift and an altered and probably extended C-terminus of the KRT71 protein NP_001183958.1:p.(Ser422ArgfsTer?). Using Sanger sequencing, we found that the variant was fixed in a cohort of 125 Curly Coated Retrievers and segregating in five of 14 additionally tested breeds with a curly or wavy coat. KRT71 variants cause curly hair in humans, mice, rats, cats and dogs. Specific KRT71 variants were further shown to cause alopecia. Based on this knowledge from other species and the predicted molecular consequence of the newly identified canine KRT71 variant, it is a compelling candidate causing a second curly hair allele in dogs. It might cause a slightly different coat phenotype than the previously published p.Arg151Trp variant and could potentially be associated with follicular dysplasia in dogs.


Subject(s)
Dogs/genetics , Hair , Keratins, Hair-Specific/genetics , Alleles , Animals , Breeding , Heterozygote , Homozygote , INDEL Mutation , Phenotype
12.
Anim Genet ; 50(1): 74-77, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30525216

ABSTRACT

Whole-genome sequencing studies are vital to gain a thorough understanding of genomic variation. Here, we summarize the results of a whole-genome sequencing study comprising 88 horses and ponies from diverse breeds at 19.1× average coverage. The paired-end reads were mapped to the current EquCab3.0 horse reference genome assembly, and we identified approximately 23.5 million single nucleotide variants and 2.3 million short indel variants. Our dataset included at least 7 million variants that were not previously reported. On average, each individual horse genome carried ∼5.7 million single nucleotides and 0.8 million small indel variants with respect to the reference genome assembly. The variants were functionally annotated. We provide two examples for potentially deleterious recessive alleles that were identified in a heterozygous state in individual genome sequences. Appropriate management of such deleterious recessive alleles in horse breeding programs should help to improve fertility and reduce the prevalence of heritable diseases. This comprehensive dataset has been made publicly available, will represent a valuable resource for future horse genetic studies and supports the goal of accelerating the rates of genetic gain in domestic horse.


Subject(s)
Genetic Variation , Genome , Horses/genetics , Animals , Breeding , Chromosome Mapping , INDEL Mutation
13.
Anim Genet ; 50(1): 27-32, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30506810

ABSTRACT

Recently, the Swiss breeding association reported an increasing number of white-spotted cattle in the Brown Swiss breed, which is normally solid brown coloured. A total of 60 Brown Swiss cattle with variably sized white abdominal spots, facial markings and depigmented claws were collected for this study. A genome-wide association study using 40k SNP genotypes of 20 cases and 1619 controls enabled us to identify an associated genome region on chromosome 22 containing the MITF gene, encoding the melanogenesis associated transcription factor. Variants at the MITF locus have been reported before to be associated with white or white-spotted phenotypes in other species such as horses, dogs and mice. Whole-genome sequencing of a single white-spotted cow and subsequent genotyping of 172 Brown Swiss cattle revealed two significantly associated completely linked single nucleotide variants (rs722765315 and rs719139527). Both variants are located in the 5'-regulatory region of the bovine MITF gene, and comparative sequence analysis showed that the variant rs722765315, located 139 kb upstream of the transcription start site of the bovine melanocyte-specific MITF transcript, is situated in a multi-species conserved sequence element which is supposed to be regulatory important. Therefore, we hypothesize that rs722765315 represents the most likely causative variant for the white-spotting phenotype observed in Brown Swiss cattle. Presence of the mutant allele in a heterozygous or homozygous state supports a dominant mode of inheritance with incomplete penetrance and results in a variable extent of coat colour depigmentation.


Subject(s)
Cattle/genetics , Hair Color/genetics , Microphthalmia-Associated Transcription Factor/genetics , Animals , Conserved Sequence , Genetic Association Studies , Genotype , Pigmentation/genetics , Polymorphism, Single Nucleotide
14.
Anim Genet ; 49(6): 645-650, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30276844

ABSTRACT

An ectopic ureter is a congenital anomaly which may lead to urinary incontinence and without a surgical intervention even to end-stage kidney disease. A genetic component contributes to the development of this anomaly in Entlebucher mountain dogs (EMD); however, its nature remains unclear. Using the Illumina CanineHD bead chip, a case-control genome-wide association study was performed to identify SNPs associated with the trait. Six loci on canine chromosomes 3, 17, 27 and 30 were identified with 16 significantly associated SNPs. There was no single outstanding SNP associated with the phenotype, and the association signals were not close to known genes involved in human congenital anomalies of the kidney or lower urinary tract. Additional research will be necessary to elucidate the potential role of the associated genes in the development of ectopic ureters in the EMD breed.


Subject(s)
Dog Diseases/genetics , Dogs/genetics , Polymorphism, Single Nucleotide , Ureter/abnormalities , Animals , Breeding , Genetic Association Studies , Genetic Predisposition to Disease , Phenotype , Urinary Incontinence
15.
Anim Genet ; 49(6): 641-644, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30246406

ABSTRACT

Ehlers-Danlos syndrome (EDS) is a group of heritable connective tissue disorders caused by defective collagen synthesis or incorrect assembly of the collagen triple helical structure. EDS is characterised by joint hypermobility, skin hyperextensibility, abnormal scarring, poor wound healing and tissue friability. Human EDS may be caused by variants in several different genes including COL5A1, which encodes the collagen type V alpha 1 chain. For the present study we investigated a 1.5-year-old, spayed female, domestic shorthair cat with EDS. The affected cat showed multiple recurrent skin tears, hyperextensibility of the skin and joint abnormalities. We obtained whole genome sequencing data from the affected cat and searched for variants in candidate genes known to cause EDS. We detected a heterozygous single base-pair deletion in exon 43 of the COL5A1 gene, namely c.3420delG. The deletion was predicted to result in a frameshift and premature stop codon: p.(Leu1141SerfsTer134). Sanger sequencing confirmed that the variant was present in the affected cat and absent from 103 unaffected cats from different breeds. The variant was also absent from a Burmese cat with EDS. Based on knowledge about the functional impact of COL5A1 variants in other species, COL5A1:c.3420delG represents a compelling candidate causative variant for the observed EDS in the affected cat.


Subject(s)
Cat Diseases/genetics , Cats/genetics , Collagen Type V/genetics , Ehlers-Danlos Syndrome/veterinary , Frameshift Mutation , Animals , Codon, Nonsense , Ehlers-Danlos Syndrome/genetics , Exons , Sequence Deletion , Skin Abnormalities
16.
Anim Genet ; 49(4): 284-290, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29932470

ABSTRACT

Loss-of-function variants in the MC1R gene cause recessive red or yellow coat-colour phenotypes in many species. The canine MC1R:c.916C>T (p.Arg306Ter) variant is widespread and found in a homozygous state in many uniformly yellow- or red-coloured dogs. We investigated cream-coloured Australian Cattle Dogs whose coat colour could not be explained by this variant. A genome-wide association study with 10 cream and 123 red Australian Cattle Dogs confirmed that the cream locus indeed maps to MC1R. Whole-genome sequencing of cream dogs revealed a single nucleotide variant within the MITF binding site of the canine MC1R promoter. We propose to designate the mutant alleles at MC1R:c.916C>T as e1 and at the new promoter variant as e2 . Both alleles segregate in the Australian Cattle Dog breed. When we considered both alleles in combination, we observed perfect association between the MC1R genotypes and the cream coat colour phenotype in a cohort of 10 cases and 324 control dogs. Analysis of the MC1R transcript levels in an e1 /e2 compound heterozygous dog confirmed that the transcript levels of the e2 allele were markedly reduced with respect to the e1 allele. We further report another MC1R loss-of-function allele in Alaskan and Siberian Huskies caused by a 2-bp deletion in the coding sequence, MC1R:c.816_817delCT. We propose to term this allele e3 . Huskies that carry two copies of MC1R loss-of-function alleles have a white coat colour.


Subject(s)
Dogs/genetics , Hair Color/genetics , Receptor, Melanocortin, Type 1/genetics , Alleles , Animals , Australia , Breeding , Genetic Association Studies/veterinary , Genotype , Phenotype , Promoter Regions, Genetic , Sequence Analysis, DNA
17.
Sci Rep ; 8(1): 5818, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29643404

ABSTRACT

Canine leukoencephalomyelopathy (LEMP) is a juvenile-onset neurodegenerative disorder of the CNS white matter currently described in Rottweiler and Leonberger dogs. Genome-wide association study (GWAS) allowed us to map LEMP in a Leonberger cohort to dog chromosome 18. Subsequent whole genome re-sequencing of a Leonberger case enabled the identification of a single private homozygous non-synonymous missense variant located in the highly conserved metallo-beta-lactamase domain of the N-acyl phosphatidylethanolamine phospholipase D (NAPEPLD) gene, encoding an enzyme of the endocannabinoid system. We then sequenced this gene in LEMP-affected Rottweilers and identified a different frameshift variant, which is predicted to replace the C-terminal metallo-beta-lactamase domain of the wild type protein. Haplotype analysis of SNP array genotypes revealed that the frameshift variant was present in diverse haplotypes in Rottweilers, and also in Great Danes, indicating an old origin of this second NAPEPLD variant. The identification of different NAPEPLD variants in dog breeds affected by leukoencephalopathies with heterogeneous pathological features, implicates the NAPEPLD enzyme as important in myelin homeostasis, and suggests a novel candidate gene for myelination disorders in people.


Subject(s)
Demyelinating Diseases/genetics , Dog Diseases/genetics , Leukoencephalopathies/veterinary , Myelin Sheath/pathology , Phospholipase D/genetics , Animals , Demyelinating Diseases/pathology , Disease Models, Animal , Dog Diseases/blood , Dog Diseases/pathology , Dogs , Genome-Wide Association Study , Haplotypes , Humans , Leukoencephalopathies/blood , Leukoencephalopathies/genetics , Leukoencephalopathies/pathology , Mutation, Missense , Polymorphism, Single Nucleotide , Whole Genome Sequencing
18.
Anim Genet ; 49(2): 137-140, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29423952

ABSTRACT

Hereditary nasal parakeratosis (HNPK), described in the Labrador Retriever breed, is a monogenic autosomal recessive disorder that causes crusts and fissures on the nasal planum of otherwise healthy dogs. Our group previously showed that this genodermatosis may be caused by a missense variant located in the SUV39H2 gene encoding a histone 3 lysine 9 methyltransferase, a chromatin modifying enzyme with a potential role in keratinocyte differentiation. In the present study, we investigated a litter of Greyhounds in which six out of eight puppies were affected with parakeratotic lesions restricted to the nasal planum. Clinically and histologically, the lesions were comparable to HNPK in Labrador Retrievers. Whole genome sequencing of one affected Greyhound revealed a 4-bp deletion at the 5'-end of intron 4 of the SUV39H2 gene that was absent in 188 control dog and three wolf genomes. The variant was predicted to disrupt the 5'-splice site with subsequent loss of SUV39H2 function. The six affected puppies were homozygous for the variant, whereas the two non-affected littermates were heterozygous. Genotyping of a larger cohort of Greyhounds revealed that the variant is segregating in the breed and that this breed might benefit from genetic testing to avoid carrier × carrier matings.


Subject(s)
Dog Diseases/genetics , Histone-Lysine N-Methyltransferase/genetics , Parakeratosis/genetics , Parakeratosis/veterinary , Animals , Breeding , Dogs , Genotype , Nose/pathology , Phenotype , Sequence Deletion
19.
Anim Genet ; 49(1): 90-93, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29333704

ABSTRACT

Humans have shaped the population history of the horse ever since domestication about 5500 years ago. Comparative analyses of the Y chromosome can illuminate the paternal origin of modern horse breeds. This may also reveal different breeding strategies that led to the formation of extant breeds. Recently, a horse Y-chromosomal phylogeny of modern horses based on 1.46 Mb of the male-specific Y (MSY) was generated. We extended this dataset with 52 samples from five European, two American and seven Asian breeds. As in the previous study, almost all modern European horses fall into a crown group, connected via a few autochthonous Northern European lineages to the outgroup, the Przewalski's Horse. In total, we now distinguish 42 MSY haplotypes determined by 158 variants within domestic horses. Asian horses show much higher diversity than previously found in European breeds. The Asian breeds also introduce a deep split to the phylogeny, preliminarily dated to 5527 ± 872 years. We conclude that the deep splitting Asian Y haplotypes are remnants of a far more diverse ancient horse population, whose haplotypes were lost in other lineages.


Subject(s)
Horses/genetics , Animals , Domestication , Horses/classification , Male , Phylogeny , Y Chromosome
20.
Anim Genet ; 49(1): 94-97, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29349785

ABSTRACT

Coat colour dilution may be the result of altered melanosome transport in melanocytes. Loss-of-function variants in the melanophilin gene (MLPH) cause a recessively inherited form of coat colour dilution in many mammalian and avian species including the dog. MLPH corresponds to the D locus in many domestic animals, and recessive alleles at this locus are frequently denoted with d. In this study, we investigated dilute coloured Chow Chows whose coat colour could not be explained by their genotype at the previously known MLPH:c.-22G>A variant. Whole genome sequencing of such a dilute Chow Chow revealed another variant in the MLPH gene: MLPH:c.705G>C. We propose to designate the corresponding mutant alleles at these two variants d1 and d2 . We performed an association study in a cohort of 15 dilute and 28 non-dilute Chow Chows. The dilute dogs were all either compound heterozygous d1 /d2 or homozygous d2 /d2 , whereas the non-dilute dogs carried at least one wildtype allele D. The d2 allele did not occur in 417 dogs from diverse other breeds. However, when we genotyped a Sloughi family, in which a dilute coloured puppy had been born out of non-dilute parents, we again observed perfect co-segregation of the newly discovered d2 allele with coat colour dilution. Finally, we identified a blue Thai Ridgeback with the d1 /d2 genotype. Thus, our data identify the MLPH:c.705G>C as a variant explaining a second canine dilution allele. Although relatively rare overall, this d2 allele is segregating in at least three dog breeds, Chow Chows, Sloughis and Thai Ridgebacks.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Dogs/classification , Dogs/genetics , Genetic Variation , Pigmentation , Animals , Dogs/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...