Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Environ Res ; 258: 119371, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38876420

ABSTRACT

Cu2ZnSnS4 (CZTS) was synthesized following hot injection method and the process was optimized by varying temperature conditions. Four samples at different temperatures viz., 200, 250, 300 and 350 °C were prepared and analyzed using different characterization techniques. Based on the correlation between XRD, Raman and XPS, we conclude that the formation of ZnS and SnS2 occurs at 350 °C but at 200 °C there is no breakdown of the complex as per XRD. According to Raman and XPS analysis, as the temperature rises, the bonds between the metals become weaker, which is visibly seen in Raman and XPS due to the minor peaks of copper sulfide. Scanning electron microscopic analysis confirmed nanometric particles which increase in size with temperature. The photocatalytic evaluation showed that CZTS synthesized at 200 °C performed efficiently in the removal of the two colorants, methylene blue and Rhodamine 6G, achieving 92.80% and 90.65%, respectively. The photocatalytic degradation efficiencies decreased at higher temperatures due to bigger sized CZTS particles as confirmed by SEM results. Computational simulations confirm that CZTS has a highly negative energy -25,764 Ry, confirming its structural stability and higher covalent than ionic character.

2.
Toxics ; 11(8)2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37624203

ABSTRACT

In this paper we produced a bio-based polyether-polyurethane foam PU1 through the prepolymer method. The prepolymer was obtained by the reaction of PEG 400 with L-Lysine ethyl ester diisocyanate (L-LDI). The freshly prepared prepolymer was extended with 2,5-bis(hydroxymethyl)furan (BHMF) to produce the final polyurethane. The renewable chemical BHMF was produced through the chemical reduction of HMF by sodium borohydride. HMF was produced by a previously reported procedure from fructose using choline chloride and ytterbium triflate. To evaluate the degradation rate of the foam PU1, we tested the chemical stability by soaking it in a 10% sodium hydroxide solution. The weight loss was only 12% after 30 days. After that, we proved that enzymatic hydrolysis after 30 days using cholesterol esterase was more favoured than hydrolysis with NaOH, with a weight loss of 24%, probably due to the hydrophobic character of the PU1 and a better adhesion of the enzyme on the surface with respect to water. BHMF was proved to be of crucial importance for the enzymatic degradation assay at 37 °C in phosphate buffer solution, because it represents the breaking point inside the polyurethane chain. Soil burial degradation test was monitored for three months to evaluate whether the joint activity of sunlight, climate changes and microorganisms, including bacteria and fungi, could further increase the biodegradation. The unexpected weight loss after soil burial degradation test was 45% after three months. This paper highlights the potential of using sustainable resources to produce new biodegradable materials.

3.
Toxics ; 11(3)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36976999

ABSTRACT

The use of TiO2 nanoparticles for photocatalysis for the degradation of organic dyes under UV light for wastewater treatment has been widely studied. However, the photocatalytic characteristics of TiO2 nanoparticles are inadequate due to their UV light response and higher band gap. In this work, three nanoparticles were synthesized: (i) TiO2 nanoparticle was synthesized by a sol-gel process. (ii) ZrO2 was prepared using a solution combustion process and (iii) mixed-phase TiO2-ZrO2 nanoparticles were synthesized by a sol-gel process to remove Eosin Yellow (EY) from aqueous solutions in the wastewater. XRD, FTIR, UV-VIS, TEM, and XPS analysis methods were used to examine the properties of the synthesized products. The XRD investigation supported the tetragonal and monoclinic crystal structures of the TiO2 and ZrO2 nanoparticles. TEM studies identified that mixed-phase TiO2-ZrO2 nanoparticles have the same tetragonal structure as pure mixed-phase. The degradation of Eosin Yellow (EY) was examined using TiO2, ZrO2, and mixed-phase TiO2-ZrO2 nanoparticles under visible light. The results confirmed that the mixed-phase TiO2-ZrO2nanoparticles show a higher level of photocatalytic activity, and the process is accomplished at a high degradation rate in lesser time and at a lower power intensity.

4.
Toxics ; 10(3)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35324753

ABSTRACT

The growing increase in the world population was accompanied by a massive development of industrialization [...].

5.
Toxics ; 9(11)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34822704

ABSTRACT

Sulfamethoxazole (SMX) is a frequently used antibiotic for the treatment of urinary tract, respiratory, and intestinal infections and as a supplement in livestock or fishery farming to boost production. The release of SMX into the environment can lead to the development of antibiotic resistance among the microbial community, which can lead to frequent clinical infections. SMX removal from water is usually done through advanced treatment processes, such as adsorption, photocatalytic oxidation, and biodegradation. Among them, the advanced oxidation process using TiO2 and its composites is being widely used. TiO2 is a widely used photocatalyst; however, it has certain limitations, such as low visible light response and quick recombination of e-/h+ pairs. Integrating the biochar with TiO2 nanoparticles can overcome such limitations. The biochar-supported TiO2 composites showed a significant increase in the photocatalytic activities in the UV-visible range, which resulted in a substantial increase in the degradation of SMX in water. The present review has critically reviewed the methods of biochar TiO2 composite synthesis, the effect of biochar integration with the TiO2 on its physicochemical properties, and the chemical pathways through which the biochar/TiO2 composite degrades the SMX in water or aqueous solution. The degradation of SMX using photocatalysis can be considered a useful model, and the research studies presented in this review will allow extending this area of research on other types of similar pharmaceuticals or pollutants in general in the future.

6.
Toxics ; 9(7)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34357901

ABSTRACT

In this work, we report solid-state synthetized defective Bi2O3 containing Bi(V) sites as effective and recyclable arsenic adsorbent materials. Bi2O3 was extensively characterized, and structure-related adsorption processes are reported. Both As(V) and As(III) species-adsorption processes were investigated in a wide range of concentrations, pH values, and times. The effect of several competing ions was also tested together with the adsorbent recyclability.

7.
Materials (Basel) ; 14(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810492

ABSTRACT

Employment and the effect of eco-friendly bismuth oxide nanoparticles (BiONPs) in bio-cement were studied. The standard method was adopted to prepare BiONPs-composite. Water was adopted for dispersing BiONPs in the composite. A representative batch (2 wt. % of BiONPs) was prepared without water to study the impact of water on composite properties. For each batch, 10 samples were prepared and tested. TGA (thermogravimetric analysis) performed on composite showed 0.8 wt. % losses in samples prepared without water whereas, maximum 2 wt. % weight losses observed in the water-based composite. Presence of BiONPs resulted in a decrease in depth of curing. Three-point bending flexural strength decreased for increasing BiONPs content. Comparative study between 2 wt. % samples with and without water showed 10.40 (±0.91) MPa and 28.45 (±2.50) MPa flexural strength values, respectively, indicating a significant (p < 0.05) increase of the mechanical properties at the macroscale. Nanoindentation revealed that 2 wt. % without water composites showed significant (p < 0.05) highest nanoindentation modulus 26.4 (±1.28) GPa and hardness 0.46 (±0.013) GPa. Usage of water as dispersion media was found to be deleterious for the overall characteristics of the composite but, at the same time, the BiONPs acted as a very promising filler that can be used in this class of composites.

8.
Materials (Basel) ; 13(22)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228140

ABSTRACT

In this review, we reported the main achievements reached by using bismuth oxides and related materials for biological applications. We overviewed the complex chemical behavior of bismuth during the transformation of its compounds to oxide and bismuth oxide phase transitions. Afterward, we summarized the more relevant studies regrouped into three categories based on the use of bismuth species: (i) active drugs, (ii) diagnostic and (iii) theragnostic. We hope to provide a complete overview of the great potential of bismuth oxides in biological environments.

9.
Polymers (Basel) ; 12(4)2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32252353

ABSTRACT

UV-LED curable coatings represent an up-to-date attractive field due to the high curing efficiency even in the presence of high filler loadings, as well as to the absence of infrared wavelengths that may negatively impact on heat-sensitive substrates. The addition of carbonaceous materials, such as biochar (BC) and/or multiwalled carbon nanotubes (MWCNTs) could positively improve both the rheological and thermal properties. In this study we report on the synthesis and characterization of carbon-reinforced films containing nanometric (MWCNTs) and micrometric (BC) carbon-based materials. We analyze the rheological properties of the UV-LED curable dispersions, as well as the thermal and optical properties of the resulting films, establishing some correlations between filler dispersion/loading with the main observed properties.

10.
Materials (Basel) ; 13(2)2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31936099

ABSTRACT

Biochar is the solid residue that is recovered after the thermal cracking of biomasses in an oxygen-free atmosphere. Biochar has been used for many years as a soil amendment and in general soil applications. Nonetheless, biochar is far more than a mere soil amendment. In this review, we report all the non-soil applications of biochar including environmental remediation, energy storage, composites, and catalyst production. We provide a general overview of the recent uses of biochar in material science, thus presenting this cheap and waste-derived material as a high value-added and carbonaceous source.

11.
Polymers (Basel) ; 11(8)2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31409023

ABSTRACT

In this work, biochar (BC) derived from spent coffee grounds has been incorporated into high density polyethylene (PE) through melt mixing. The influence of the filler content on the rheological and thermal behavior of the obtained composites was assessed. In particular, a rheological study was performed systematically using different flow fields, including linear and nonlinear dynamic shear flow, revealing that the dynamics of PE macromolecules in the composite materials are slowed down because of the confinement of the polymer chains onto the filler surface and/or within the BC porous structure. Oscillatory amplitude sweep tests indicated that composites show weak strain overshoot behavior in the nonlinear regime: This finding clearly proves the formation of weak structural complexes, which cause a retardation of the macromolecular chains dynamics. Furthermore, the embedded BC particles were able to improve the thermo-oxidative stability of PE-based composites, remarkably increasing the PE decomposition temperatures.

12.
Sensors (Basel) ; 19(4)2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30781439

ABSTRACT

Worldwide consumption of coffee exceeds 11 billion tons/year. Used coffee grounds end up as landfill. However, the unique structural properties of its porous surface make coffee grounds popular for the adsorption of gaseous molecules. In the present work, we demonstrate the use of coffee grounds as a potential and cheap source for biochar carbon. The produced coffee ground biochar (CGB) was investigated as a sensing material for developing humidity sensors. CGB was fully characterized by using laser granulometry, X-ray diffraction (XRD), Raman spectroscopy, field emission-scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and the Brunnauer Emmett Teller (BET) technique in order to acquire a complete understanding of its structural and surface properties and composition. Subsequently humidity sensors were screen printed using an ink-containing CGB with polyvinyl butyral (PVB) acting as a temporary binder and ethylene glycol monobutyral ether, Emflow, as an organic vehicle so that the proper rheological characteristics were achieved. Screen-printed films were the heated at 300℃ in air. Humidity tests were performed under a flow of 1.7 L/min in the relative humidity range 0⁻100% at room temperature. The initial impedance of the film was 25.2 0.15 MΩ which changes to 12.3 MΩ under 98% humidity exposure. A sensor response was observed above 20 % relative humidity (RH). Both the response and recovery times were reasonably fast (less than 2 min).

13.
J Nanosci Nanotechnol ; 18(2): 1468-1473, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29448616

ABSTRACT

Polydimethylsiloxane has exceptional fire retardancy characteristics, which make it a popular polymer in flame retardancy applications. Flame retardancy of polydimethylsiloxane with different nano fillers was studied. Polydimethylsiloxane composite fire property varies because of the shape, size, density, and chemical nature of nano fillers. In house made carbon and bismuth oxide nano fillers were used in polydimethylsiloxane composite. Carbon from biochar (carbonised bamboo) and a carbon by-product (carbon soot) were selected. For comparative study of nano fillers, standard commercial multiwall carbon nano tubes (functionalised, graphitised and pristine) as nano fillers were selected. Nano fillers in polydimethylsiloxane positively affects their fire retardant properties such as total smoke release, peak heat release rate, and time to ignition. Charring and surface ceramization are the main reasons for such improvement. Nano fillers in polydimethylsiloxane may affect the thermal mobility of polymer chains, which can directly affect the time to ignition. The study concludes that the addition of pristine multiwall carbon nano tubes and bismuth oxide nano particles as filler in polydimethylsiloxane composite improves the fire retardant property.

14.
ACS Nano ; 7(6): 5114-21, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23672711

ABSTRACT

Carboxylic functionalization (-COOH groups) of carbon nanotubes is known to improve their dispersion properties and increase the electrical conductivity of carbon-nanotube-polymer nanocomposites. We have studied experimentally the effects of this type of functionalization on the thermal conductivity of the nanocomposites. It was found that while even small quantities of carbon nanotubes (~1 wt %) can increase the electrical conductivity, a larger loading fraction (~3 wt %) is required to enhance the thermal conductivity of nanocomposites. Functionalized multi-wall carbon nanotubes performed the best as filler material leading to a simultaneous improvement of the electrical and thermal properties of the composites. Functionalization of the single-wall carbon nanotubes reduced the thermal conductivity enhancement. The observed trends were explained by the fact that while surface functionalization increases the coupling between carbon nanotube and polymer matrix, it also leads to formation of defects, which impede the acoustic phonon transport in the single-wall carbon nanotubes. The obtained results are important for applications of carbon nanotubes and graphene flakes as fillers for improving thermal, electrical and mechanical properties of composites.


Subject(s)
Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Polymers/chemistry , Temperature , Carboxylic Acids/chemistry , Electric Conductivity , Models, Molecular , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...