Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38743428

ABSTRACT

INTRODUCTION: This review summarizes our current understanding of the respiratory microbiome in COPD and Bronchiectasis. We explore the interplay between microbial communities, host immune responses, disease pathology and treatment outcomes. AREAS COVERED: We detail the dynamics of the airway microbiome, its influence in chronic respiratory diseases, and analytical challenges. Relevant articles from PubMed and Medline searches between Jan 2010 and March 2024 were retrieved and summarized. The review examines clinical correlations of the microbiome in COPD and bronchiectasis, assessing how current therapies impact upon it. The potential of emerging immunotherapies, anti-inflammatories and antimicrobial strategies are discussed, with focus on the pivotal role of commensal taxa in maintaining respiratory health and the promising avenue of microbiome remodeling for disease management. EXPERT OPINION: Given the heterogeneity in microbiome composition and its pivotal role in disease development and progression, a shift toward microbiome-directed therapeutics is appealing. This transition, from traditional 'pathogen-centric' diagnostic and treatment modalities to those acknowledging the microbiome, can be enabled by evolving cross-disciplinary platforms which have the potential to accelerate microbiome-based interventions into routine clinical practice. Bridging the gap between comprehensive microbiome analysis and clinical application, however, remains challenging, necessitating continued innovation in research, diagnostics, trials and therapeutic development pipelines.

2.
Nat Commun ; 14(1): 7772, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012164

ABSTRACT

The extracellular matrix of bacterial biofilms consists of diverse components including polysaccharides, proteins and DNA. Extracellular RNA (eRNA) can also be present, contributing to the structural integrity of biofilms. However, technical difficulties related to the low stability of RNA make it difficult to understand the precise roles of eRNA in biofilms. Here, we show that eRNA associates with extracellular DNA (eDNA) to form matrix fibres in Pseudomonas aeruginosa biofilms, and the eRNA is enriched in certain bacterial RNA transcripts. Degradation of eRNA associated with eDNA led to a loss of eDNA fibres and biofilm viscoelasticity. Compared with planktonic and biofilm cells, the biofilm matrix was enriched in specific mRNA transcripts, including lasB (encoding elastase). The mRNA transcripts colocalised with eDNA fibres in the biofilm matrix, as shown by single molecule inexpensive FISH microscopy (smiFISH). The lasB mRNA was also observed in eDNA fibres in a clinical sputum sample positive for P. aeruginosa. Thus, our results indicate that the interaction of specific mRNAs with eDNA facilitates the formation of viscoelastic networks in the matrix of Pseudomonas aeruginosa biofilms.


Subject(s)
Pseudomonas aeruginosa , RNA , Pseudomonas aeruginosa/metabolism , RNA/metabolism , Biofilms , DNA/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism
3.
Am J Respir Crit Care Med ; 207(7): 908-920, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36288294

ABSTRACT

Rationale: Emerging data support the existence of a microbial "gut-lung" axis that remains unexplored in bronchiectasis. Methods: Prospective and concurrent sampling of gut (stool) and lung (sputum) was performed in a cohort of n = 57 individuals with bronchiectasis and subjected to bacteriome (16S rRNA) and mycobiome (18S Internal Transcribed Spacer) sequencing (total, 228 microbiomes). Shotgun metagenomics was performed in a subset (n = 15; 30 microbiomes). Data from gut and lung compartments were integrated by weighted similarity network fusion, clustered, and subjected to co-occurrence analysis to evaluate gut-lung networks. Murine experiments were undertaken to validate specific Pseudomonas-driven gut-lung interactions. Results: Microbial communities in stable bronchiectasis demonstrate a significant gut-lung interaction. Multibiome integration followed by unsupervised clustering reveals two patient clusters, differing by gut-lung interactions and with contrasting clinical phenotypes. A high gut-lung interaction cluster, characterized by lung Pseudomonas, gut Bacteroides, and gut Saccharomyces, is associated with increased exacerbations and greater radiological and overall bronchiectasis severity, whereas the low gut-lung interaction cluster demonstrates an overrepresentation of lung commensals, including Prevotella, Fusobacterium, and Porphyromonas with gut Candida. The lung Pseudomonas-gut Bacteroides relationship, observed in the high gut-lung interaction bronchiectasis cluster, was validated in a murine model of lung Pseudomonas aeruginosa infection. This interaction was abrogated after antibiotic (imipenem) pretreatment in mice confirming the relevance and therapeutic potential of targeting the gut microbiome to influence the gut-lung axis. Metagenomics in a subset of individuals with bronchiectasis corroborated our findings from targeted analyses. Conclusions: A dysregulated gut-lung axis, driven by lung Pseudomonas, associates with poorer clinical outcomes in bronchiectasis.


Subject(s)
Bronchiectasis , Microbiota , Animals , Mice , Prospective Studies , RNA, Ribosomal, 16S/genetics , Lung/microbiology , Bronchiectasis/drug therapy
4.
Eur Respir J ; 61(1)2023 01.
Article in English | MEDLINE | ID: mdl-35926878

ABSTRACT

BACKGROUND: Variable clinical outcomes are reported with fungal sensitisation in chronic obstructive pulmonary disease (COPD), and it remains unclear which fungi and what allergens associate with the poorest outcomes. The use of recombinant as opposed to crude allergens for such assessment is unknown. METHODS: A prospective multicentre assessment of stable COPD (n=614) was undertaken in five hospitals across three countries: Singapore, Malaysia and Hong Kong. Clinical and serological assessment was performed against a panel of 35 fungal allergens including crude and recombinant Aspergillus and non-Aspergillus allergens. Unsupervised clustering and topological data analysis (TDA) approaches were employed using the measured sensitisation responses to elucidate if sensitisation subgroups exist and their related clinical outcomes. RESULTS: Aspergillus fumigatus sensitisation was associated with increased exacerbations in COPD. Unsupervised cluster analyses revealed two "fungal sensitisation" groups. The first was characterised by Aspergillus sensitisation and increased exacerbations, poorer lung function and worse prognosis. Polysensitisation in this group conferred even poorer outcome. The second group, characterised by Cladosporium sensitisation, was more symptomatic. Significant numbers of individuals demonstrated sensitisation responses to only recombinant (as opposed to crude) A. fumigatus allergens f 1, 3, 5 and 6, and exhibited increased exacerbations, poorer lung function and an overall worse prognosis. TDA validated these findings and additionally identified a subgroup within Aspergillus-sensitised COPD of patients with frequent exacerbations. CONCLUSION: Aspergillus sensitisation is a treatable trait in COPD. Measuring sensitisation responses to recombinant Aspergillus allergens identifies an important patient subgroup with poor COPD outcomes that remains overlooked by assessment of only crude Aspergillus allergens.


Subject(s)
Aspergillus fumigatus , Pulmonary Disease, Chronic Obstructive , Humans , Aspergillus fumigatus/genetics , Allergens , Prospective Studies , Immunoglobulin E , Pulmonary Disease, Chronic Obstructive/complications , Aspergillus
5.
Cell Host Microbe ; 30(9): 1311-1327.e8, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36108613

ABSTRACT

Neisseria species are frequently identified in the bronchiectasis microbiome, but they are regarded as respiratory commensals. Using a combination of human cohorts, next-generation sequencing, systems biology, and animal models, we show that bronchiectasis bacteriomes defined by the presence of Neisseria spp. associate with poor clinical outcomes, including exacerbations. Neisseria subflava cultivated from bronchiectasis patients promotes the loss of epithelial integrity and inflammation in primary epithelial cells. In vivo animal models of Neisseria subflava infection and metabolipidome analysis highlight immunoinflammatory functional gene clusters and provide evidence for pulmonary inflammation. The murine metabolipidomic data were validated with human Neisseria-dominant bronchiectasis samples and compared with disease in which Pseudomonas-, an established bronchiectasis pathogen, is dominant. Metagenomic surveillance of Neisseria across various respiratory disorders reveals broader importance, and the assessment of the home environment in bronchiectasis implies potential environmental sources of exposure. Thus, we identify Neisseria species as pathobionts in bronchiectasis, allowing for improved risk stratification in this high-risk group.


Subject(s)
Bronchiectasis , Microbiota , Animals , Bronchiectasis/epidemiology , Humans , Metagenome , Mice , Neisseria/genetics
7.
Arch. bronconeumol. (Ed. impr.) ; 58(1): 8-10, ene 2022. ilus
Article in English | IBECS | ID: ibc-202835

ABSTRACT

No disponible


Subject(s)
Health Sciences
8.
Semin Respir Crit Care Med ; 42(4): 556-566, 2021 08.
Article in English | MEDLINE | ID: mdl-34261180

ABSTRACT

Bronchiectasis is a chronic condition of global relevance resulting in permanent and irreversible structural airway damage. Bacterial infection in bronchiectasis is well studied; however, recent molecular studies identify fungi as important pathogens, either independently or in association with bacteria. Aspergillus species are established fungal pathogens in cystic fibrosis and their role is now increasingly being recognized in noncystic fibrosis bronchiectasis. While the healthy airway is constantly exposed to ubiquitously present Aspergillus conidia in the environment, anatomically damaged airways appear more prone to colonization and subsequent infection by this fungal group. Aspergilli possess diverse immunopathological mechanistic capabilities and when coupled with innate immune defects in a susceptible host, such as that observed in bronchiectasis, it may promote a range of clinical manifestations including sensitization, allergic bronchopulmonary aspergillosis, Aspergillus bronchitis, and/or invasive aspergillosis. How such clinical states influence "endophenotypes" in bronchiectasis is therefore of importance, as each Aspergillus-associated disease state has overlapping features with bronchiectasis itself, and can evolve, depending on underlying host immunity from one type into another. Concurrent Aspergillus infection complicates the clinical course and exacerbations in bronchiectasis and therefore dedicated research to better understand the Aspergillus-host interaction in the bronchiectasis airway is now warranted.


Subject(s)
Aspergillosis, Allergic Bronchopulmonary , Aspergillosis , Bronchiectasis , Pulmonary Aspergillosis , Aspergillus , Endophenotypes , Humans
9.
Nat Med ; 27(4): 688-699, 2021 04.
Article in English | MEDLINE | ID: mdl-33820995

ABSTRACT

Bronchiectasis, a progressive chronic airway disease, is characterized by microbial colonization and infection. We present an approach to the multi-biome that integrates bacterial, viral and fungal communities in bronchiectasis through weighted similarity network fusion ( https://integrative-microbiomics.ntu.edu.sg ). Patients at greatest risk of exacerbation have less complex microbial co-occurrence networks, reduced diversity and a higher degree of antagonistic interactions in their airway microbiome. Furthermore, longitudinal interactome dynamics reveals microbial antagonism during exacerbation, which resolves following treatment in an otherwise stable multi-biome. Assessment of the Pseudomonas interactome shows that interaction networks, rather than abundance alone, are associated with exacerbation risk, and that incorporation of microbial interaction data improves clinical prediction models. Shotgun metagenomic sequencing of an independent cohort validated the multi-biome interactions detected in targeted analysis and confirmed the association with exacerbation. Integrative microbiomics captures microbial interactions to determine exacerbation risk, which cannot be appreciated by the study of a single microbial group. Antibiotic strategies probably target the interaction networks rather than individual microbes, providing a fresh approach to the understanding of respiratory infection.


Subject(s)
Bronchiectasis/microbiology , Microbiota , Bronchiectasis/virology , Disease Progression , Humans , Metagenomics , Microbial Interactions/genetics , Microbiota/genetics , Phylogeny
10.
Eur Respir J ; 56(2)2020 08.
Article in English | MEDLINE | ID: mdl-32341102

ABSTRACT

INTRODUCTION: Allergic sensitisation to fungi such as Aspergillus are associated to poor clinical outcomes in asthma, bronchiectasis and cystic fibrosis; however, clinical relevance in COPD remains unclear. METHODS: Patients with stable COPD (n=446) and nondiseased controls (n=51) were prospectively recruited across three countries (Singapore, Malaysia and Hong Kong) and screened against a comprehensive allergen panel including house dust mites, pollens, cockroach and fungi. For the first time, using a metagenomics approach, we assessed outdoor and indoor environmental allergen exposure in COPD. We identified key fungi in outdoor air and developed specific-IgE assays against the top culturable fungi, linking sensitisation responses to COPD outcomes. Indoor air and surface allergens were prospectively evaluated by metagenomics in the homes of 11 COPD patients and linked to clinical outcome. RESULTS: High frequencies of sensitisation to a broad range of allergens occur in COPD. Fungal sensitisation associates with frequent exacerbations, and unsupervised clustering reveals a "highly sensitised fungal predominant" subgroup demonstrating significant symptomatology, frequent exacerbations and poor lung function. Outdoor and indoor environments serve as important reservoirs of fungal allergen exposure in COPD and promote a sensitisation response to outdoor air fungi. Indoor (home) environments with high fungal allergens associate with greater COPD symptoms and poorer lung function, illustrating the importance of environmental exposures on clinical outcomes in COPD. CONCLUSION: Fungal sensitisation is prevalent in COPD and associates with frequent exacerbations representing a potential treatable trait. Outdoor and indoor (home) environments represent a key source of fungal allergen exposure, amenable to intervention, in "sensitised" COPD.


Subject(s)
Air Pollution, Indoor , Pulmonary Disease, Chronic Obstructive , Air Pollution, Indoor/analysis , Allergens , Fungi , Hong Kong , Humans , Malaysia/epidemiology , Singapore
11.
Arch Immunol Ther Exp (Warsz) ; 66(5): 329-339, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29541797

ABSTRACT

Pseudomonas aeruginosa is a major pathogen responsible for both acute and chronic infection. Known as a colonising pathogen of the cystic fibrosis (CF) lung, it is implicated in other settings such as bronchiectasis. It has the ability to cause acute disseminated or localised infection particularly in the immunocompromised. Human hormones have been highlighted as potential regulators of bacterial virulence through crosstalk between analogous "quorum sensing" (QS) systems present in the bacteria that respond to mammalian hormones. Pseudomonas aeruginosa is known to utilise interconnected QS systems to coordinate its virulence and evade various aspects of the host immune system activated in response to infection. Several human hormones demonstrate an influence on P. aeruginosa growth and virulence. This inter-kingdom signalling, termed "microbial endocrinology" has important implications for host-microbe interaction during infection and, potentially opens up novel avenues for therapeutic intervention. This phenomenon, supported by the existence of sexual dichotomies in both microbial infection and chronic lung diseases such as CF is potentially explained by sex hormones and their influence on the infective process. This review summarises our current understanding of the microbial endocrinology of P. aeruginosa, including its endogenous QS systems and their intersection with human endocrinology, pathogenesis of infection and the host immune system.


Subject(s)
Bronchiectasis/immunology , Cystic Fibrosis/immunology , Gonadal Steroid Hormones/metabolism , Inflammation/immunology , Lung/immunology , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/physiology , Animals , Bronchiectasis/microbiology , Cystic Fibrosis/microbiology , Gonadal Steroid Hormones/immunology , Humans , Immune Evasion , Inflammation/microbiology , Lung/microbiology , Quorum Sensing , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...