Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Reg Health Southeast Asia ; 23: 100195, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38404514

ABSTRACT

Background: There is an inequitable distribution of radiology facilities in India. This scoping review aimed at mapping the available technology instruments to improve access to imaging at primary health care; to identify the facilitators and barriers, and the knowledge gaps for widespread adaptation of technology solutions. Methods: A search was conducted using broad inclusive terms non-specific to subtypes of medical imaging devices or informatics. Work published in the English language between 2005 and 2022, conducted primarily in India, and with full manuscripts were included. Two authors independently screened the abstracts against the inclusion criteria for full-text review and a senior author settled discrepancies. Data were extracted using DistillerSR software. Findings: 43 original articles and 52 non-academic materials were finally reviewed. The data was from 10 Indian states with n = 9 from rural settings. The broad trends in original articles were: connectivity using teleradiology (n = 7), mobile digital imaging units (n = 9), artificial intelligence (n = 16); mobile devices and smartphone applications (n = 7); data security (n = 7) and web-based technology (n = 2); public-private partnership (n = 9); cost (n = 2); concordance (n = 19); evaluation (n = 4); implementation (n = 2). Interpretation: Available evidence suggests that teleradiology when combined with AI and mobile digital imaging units can address radiologist shortages; strengthen programs aimed at population screening and emergency care. However, there is insufficient data on the scale of teleradiology networks within India; needs assessment; cost; facilitators, and barriers for implementation of technologies solutions in primary healthcare settings. Regulations governing quality standards, data protection, and confidentiality are unclear. Funding: The authors are The Lancet Citizen's Commission fellows. The Lancet Commission has received financial support from the Lakshmi Mittal and Family South Asia Institute, Harvard University; Christian Medical College, Vellore (CMC), Vellore; Azim Premji Foundation, Infosys; Kirloskar Systems Ltd.; Mahindra & Mahindra Ltd.; Rohini Nilekani Philanthropies; and Serum Institute of India. The views expressed are those of the author(s) and not necessarily those of the Lancet Citizens' Commission or its partners.

2.
Diagnostics (Basel) ; 12(10)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36292071

ABSTRACT

BACKGROUND: Missed findings in chest X-ray interpretation are common and can have serious consequences. METHODS: Our study included 2407 chest radiographs (CXRs) acquired at three Indian and five US sites. To identify CXRs reported as normal, we used a proprietary radiology report search engine based on natural language processing (mPower, Nuance). Two thoracic radiologists reviewed all CXRs and recorded the presence and clinical significance of abnormal findings on a 5-point scale (1-not important; 5-critical importance). All CXRs were processed with the AI model (Qure.ai) and outputs were recorded for the presence of findings. Data were analyzed to obtain area under the ROC curve (AUC). RESULTS: Of 410 CXRs (410/2407, 18.9%) with unreported/missed findings, 312 (312/410, 76.1%) findings were clinically important: pulmonary nodules (n = 157), consolidation (60), linear opacities (37), mediastinal widening (21), hilar enlargement (17), pleural effusions (11), rib fractures (6) and pneumothoraces (3). AI detected 69 missed findings (69/131, 53%) with an AUC of up to 0.935. The AI model was generalizable across different sites, geographic locations, patient genders and age groups. CONCLUSION: A substantial number of important CXR findings are missed; the AI model can help to identify and reduce the frequency of important missed findings in a generalizable manner.

3.
Diagnostics (Basel) ; 12(9)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36140488

ABSTRACT

Purpose: We assessed whether a CXR AI algorithm was able to detect missed or mislabeled chest radiograph (CXR) findings in radiology reports. Methods: We queried a multi-institutional radiology reports search database of 13 million reports to identify all CXR reports with addendums from 1999-2021. Of the 3469 CXR reports with an addendum, a thoracic radiologist excluded reports where addenda were created for typographic errors, wrong report template, missing sections, or uninterpreted signoffs. The remaining reports contained addenda (279 patients) with errors related to side-discrepancies or missed findings such as pulmonary nodules, consolidation, pleural effusions, pneumothorax, and rib fractures. All CXRs were processed with an AI algorithm. Descriptive statistics were performed to determine the sensitivity, specificity, and accuracy of the AI in detecting missed or mislabeled findings. Results: The AI had high sensitivity (96%), specificity (100%), and accuracy (96%) for detecting all missed and mislabeled CXR findings. The corresponding finding-specific statistics for the AI were nodules (96%, 100%, 96%), pneumothorax (84%, 100%, 85%), pleural effusion (100%, 17%, 67%), consolidation (98%, 100%, 98%), and rib fractures (87%, 100%, 94%). Conclusions: The CXR AI could accurately detect mislabeled and missed findings. Clinical Relevance: The CXR AI can reduce the frequency of errors in detection and side-labeling of radiographic findings.

SELECTION OF CITATIONS
SEARCH DETAIL
...