Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Mater ; 21(4): 416-422, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34969994

ABSTRACT

Disordered magnetic states known as spin liquids are of paramount importance in both fundamental and applied science. A classical state of this kind was predicted for the Ising antiferromagnetic triangular model, while additional non-commuting exchange terms were proposed to induce its quantum version-a quantum spin liquid. However, these predictions have not yet been confirmed experimentally. Here, we report evidence for such a state in the triangular-lattice antiferromagnet NdTa7O19. We determine its magnetic ground state, which is characterized by effective spin-1/2 degrees of freedom with Ising-like nearest-neighbour correlations and gives rise to spin excitations persisting down to the lowest accessible temperature of 40 mK. Our study demonstrates the key role of strong spin-orbit coupling in stabilizing spin liquids that result from magnetic anisotropy and highlights the large family of rare-earth (RE) heptatantalates RETa7O19 as a framework for realization of these states, which represent a promising platform for quantum applications.

2.
IEEE Trans Ultrason Ferroelectr Freq Control ; 66(12): 1935-1941, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31425029

ABSTRACT

High-performance lead-free multiferroic composites are desired to replace the lead-based ceramics in multifunctional device applications. Laminated compounds were prepared from ferroelectric and ferromagnetic materials. In this work, we present the laminated ceramics compound by considering the ferromagnetic La0.5Ca0.5MnO3 (LCMO) and the ferroelectric BaTi0.8Sn0.2O3 (BTSO) in two different proportions. Compounds ( 1-x ) LCMO-( x ) BTSO with x = 1 and 0 (pure materials) were synthesized by the sol-gel method, and x = 0.7 and 0.5 (laminated) compounds were elaborated by welding appropriate mass ratios of each pure material by using the silver paste technique. Structural, dielectric, ferroelectric, microstructure, and magnetic characterizations were conducted on these samples. X-ray scattering results showed pure perovskite phases confirming the successful formation of both LCMO and BTSO. Scanning electron microscope (SEM) images evidenced the laminated structure and good quality of the interfaces. The laminated composite materials have demonstrated a multiferroic behavior characterized by the ferroelectric and the ferromagnetic hysteresis loops. Furthermore, the enhancement of the dielectric constant in the laminated composite samples is mainly attributed to the Maxwell-Wagner polarization.

3.
RSC Adv ; 8(26): 14694-14704, 2018 Apr 17.
Article in English | MEDLINE | ID: mdl-35540786

ABSTRACT

A detailed magnetic study of separated Fe-Pt NPs and Fe-Pt clusters was performed to predict their optimal size and morphology for the maximum saturation magnetization, a factor that is known to influence the performance of a magnetic-resonance-imaging (MRI) contrast agent. Excellent stability and biocompatibility of the nanoparticle suspension was achieved using a novel coating based on hydrocaffeic acid (HCA), which was confirmed with a detailed Fourier-transform infrared spectroscopy (FTIR) study. An in vitro study on a human-bladder papillary urothelial neoplasm RT4 cell line confirmed that HCA-Fe-Pt nanoparticles showed no cytotoxicity, even at a very high concentration (550 µg Fe-Pt per mL), with no delayed cytotoxic effect being detected. This indicates that the HCA coating provides excellent biocompatibility of the nanoparticles, which is a prerequisite for the material to be used as a safe contrast agent for MRI. The cellular uptake and internalization mechanism were studied using ICP-MS and TEM analyses. Furthermore, it was shown that even a very low concentration of Fe-Pt nanoparticles (<10 µg mL-1) in the cells is enough to decrease the T 2 relaxation times by 70%. In terms of the MRI imaging, this means a large improvement in the contrast, even at a low nanoparticle concentration and an easier visualization of the tissues containing nanoparticles, proving that HCA-coated Fe-Pt nanoparticles have the potential to be used as an efficient and safe MRI contrast agent.

4.
Sci Rep ; 5: 7703, 2015 Jan 09.
Article in English | MEDLINE | ID: mdl-25572803

ABSTRACT

Diluted magnetic semiconductors possessing intrinsic static magnetism at high temperatures represent a promising class of multifunctional materials with high application potential in spintronics and magneto-optics. In the hexagonal Fe-doped diluted magnetic oxide, 6H-BaTiO3-δ, room-temperature ferromagnetism has been previously reported. Ferromagnetism is broadly accepted as an intrinsic property of this material, despite its unusual dependence on doping concentration and processing conditions. However, the here reported combination of bulk magnetization and complementary in-depth local-probe electron spin resonance and muon spin relaxation measurements, challenges this conjecture. While a ferromagnetic transition occurs around 700 K, it does so only in additionally annealed samples and is accompanied by an extremely small average value of the ordered magnetic moment. Furthermore, several additional magnetic instabilities are detected at lower temperatures. These coincide with electronic instabilities of the Fe-doped 3C-BaTiO3-δ pseudocubic polymorph. Moreover, the distribution of iron dopants with frozen magnetic moments is found to be non-uniform. Our results demonstrate that the intricate static magnetism of the hexagonal phase is not intrinsic, but rather stems from sparse strain-induced pseudocubic regions. We point out the vital role of internal strain in establishing defect ferromagnetism in systems with competing structural phases.

5.
Phys Rev Lett ; 113(10): 107001, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25238377

ABSTRACT

High-entropy alloys (HEAs) are multicomponent mixtures of elements in similar concentrations, where the high entropy of mixing can stabilize disordered solid-solution phases with simple structures like a body-centered cubic or a face-centered cubic, in competition with ordered crystalline intermetallic phases. We have synthesized an HEA with the composition Ta34Nb33Hf8Zr14Ti11 (in at. %), which possesses an average body-centered cubic structure of lattice parameter a=3.36 Å. The measurements of the electrical resistivity, the magnetization and magnetic susceptibility, and the specific heat revealed that the Ta34Nb33Hf8Zr14Ti11 HEA is a type II superconductor with a transition temperature Tc≈7.3 K, an upper critical field µ0H_c2≈8.2 T, a lower critical field µ0Hc1≈32 mT, and an energy gap in the electronic density of states (DOS) at the Fermi level of 2Δ≈2.2 meV. The investigated HEA is close to a BCS-type phonon-mediated superconductor in the weak electron-phonon coupling limit, classifying it as a "dirty" superconductor. We show that the lattice degrees of freedom obey Vegard's rule of mixtures, indicating completely random mixing of the elements on the HEA lattice, whereas the electronic degrees of freedom do not obey this rule even approximately so that the electronic properties of a HEA are not a "cocktail" of properties of the constituent elements. The formation of a superconducting gap contributes to the electronic stabilization of the HEA state at low temperatures, where the entropic stabilization is ineffective, but the electronic energy gain due to the superconducting transition is too small for the global stabilization of the disordered state, which remains metastable.

6.
J Phys Condens Matter ; 25(42): 425703, 2013 Oct 23.
Article in English | MEDLINE | ID: mdl-24080784

ABSTRACT

Large-unit-cell complex metallic alloys (CMAs) frequently achieve stability by lowering the kinetic energy of the electron system through formation of a pseudogap in the electronic density of states (DOS) across the Fermi energy εF. By employing experimental techniques that are sensitive to the electronic DOS in the vicinity of εF, we have studied the stabilization mechanism of two binary CMA phases from the Al-Mg system: the γ-Mg17Al12 phase with 58 atoms in the unit cell and the ß-Mg2Al3 phase with 1178 atoms in the unit cell. Since the investigated alloys are free from transition metal elements, orbital hybridization effects must be small and we were able to test whether the alloys obey the Hume-Rothery stabilization mechanism, where a pseudogap in the DOS is produced by the Fermi surface-Brillouin zone interactions. The results have shown that the DOS of the γ-Mg17Al12 phase exhibits a pronounced pseudogap centered almost exactly at εF, which is compatible with the theoretical prediction that this phase is stabilized by the Hume-Rothery mechanism. The disordered cubic ß-Mg2Al3 phase is most likely entropically stabilized at high temperatures, whereas at lower temperatures stability is achieved by undergoing a structural phase transition to more ordered rhombohedral ß' phase at 214 ° C, where all atomic sites become fully occupied. No pseudogap in the vicinity of εF was detected for the ß' phase on the energy scale of a few 100 meV as determined by the 'thermal observation window' of the Fermi-Dirac function, so that the Hume-Rothery stabilization mechanism is not confirmed for this compound. However, the existence of a much broader shallow pseudogap due to several critical reciprocal lattice vectors [Formula: see text] that simultaneously satisfy the Hume-Rothery interference condition remains the most plausible stabilization mechanism of this phase. At Tc = 0.85 K, the ß' phase undergoes a superconducting transition, which slightly increases the cohesive energy and may contribute to relative stability of this phase against competing neighboring phases.

7.
Dalton Trans ; 41(39): 12282-8, 2012 Oct 21.
Article in English | MEDLINE | ID: mdl-22930068

ABSTRACT

A new di-manganese complex with "back-to-back" 1,4-bis(2,2':6,2''-terpyridin-4'-yl) benzene ligation has been synthesized and characterised by a variety of techniques. The back-to-back ligation presents a novel new mononuclear manganese catalytic centre that functions as a heterogeneous catalysis for the evolution of oxygen in the presence of an exogenous oxidant. We discuss the synthesis and spectroscopic characterizations of this complex and propose a mechanism for oxygen evolution activity of the compound in the presence of oxone. The di-manganese complex also shows efficient and selective catalytic oxidation of sulfides in the presence of H(2)O(2). Density functional theory calculations were used to assess the structural optimization of the complex and a proposed reaction pathway with oxone. The calculations show that middle benzene ring is distorted respect to both of metallic centers, and this in turn leads to negligible resonance of electrons between two sides of complex. The calculations also indicate the unpaired electron located on oxyl-ligand emphasizes the radical mechanism of water oxidation for the system.


Subject(s)
Benzene Derivatives/chemistry , Coordination Complexes/chemistry , Manganese/chemistry , Catalysis , Oxygen/chemistry , Spectroscopy, Fourier Transform Infrared
8.
J Phys Condens Matter ; 24(8): 085703, 2012 Feb 29.
Article in English | MEDLINE | ID: mdl-22310701

ABSTRACT

The PdGa intermetallic compound is a highly selective and stable heterogeneous hydrogenation catalyst for the semi-hydrogenation of acetylene. We have studied single crystals of PdGa grown by the Czochralski technique. The (69)Ga electric-field-gradient (EFG) tensor was determined by means of NMR spectroscopy, giving experimental confirmation of both the recently refined structural model of PdGa and the theoretically predicted Pd-Ga covalent bonding scheme. The hydrogenation experiment has detected no hydrogen uptake in the PdGa, thus preventing in situ hydride formation that leads to a reduction of the catalytic selectivity. We have also determined bulk physical properties (the magnetic susceptibility, the electrical resistivity, the thermoelectric power, the Hall coefficient, the thermal conductivity and the specific heat) of single-crystalline PdGa. The results show that PdGa is a diamagnet with metallic electrical resistivity and moderately high thermal conductivity. The thermoelectric power is negative with complicated temperature dependence, whereas the Hall coefficient is positive and temperature-dependent, indicating complexity of the Fermi surface. Partial fulfillment of the NMR Korringa relation reveals that the charge carriers are weakly correlated. Specific heat measurements show that the density of electronic states (DOS) at the Fermi energy of PdGa is reduced to 15% of the DOS of the elemental Pd metal.

9.
J Phys Condens Matter ; 24(5): 056002, 2012 Feb 08.
Article in English | MEDLINE | ID: mdl-22248673

ABSTRACT

The magnetic properties of layered hydroxylammonium fluorocobaltate (NH(3)OH)(2)CoF(4) were investigated by measuring its dc magnetic susceptibility in zero-field-cooled (ZFC) and field-cooled (FC) regimes, its frequency dependent ac susceptibility, its isothermal magnetization curves after ZFC and FC regimes, and its heat capacity. Effects of pressure and magnetic field on magnetic phase transitions were studied by susceptibility and heat capacity measurements, respectively. The system undergoes a magnetic phase transition from a paramagnetic state to a canted antiferromagnetic state exhibiting a weak ferromagnetic behavior at T(C) = 46.5 K and an antiferromagnetic transition at T(N) = 2.9 K. The most spectacular manifestation of the complex magnetic behavior in this system is a shift of the isothermal magnetization hysteresis loop in a temperature range below 20 K after the FC regime-an exchange bias phenomenon. We investigated the exchange bias as a function of the magnetic field during cooling and as a function of temperature. The observed exchange bias was attributed to the large exchange anisotropy which exists due to the quasi-2D structure of the layered (NH(3)OH)(2)CoF(4) material.


Subject(s)
Chemistry, Physical/methods , Cobalt/chemistry , Fluorine Compounds/chemistry , Quaternary Ammonium Compounds/chemistry , Algorithms , Anisotropy , Hot Temperature , Magnetic Fields , Magnetics , Molecular Conformation , Phase Transition , Pressure , Temperature
10.
Phys Rev Lett ; 107(4): 047208, 2011 Jul 22.
Article in English | MEDLINE | ID: mdl-21867041

ABSTRACT

We have investigated the magnetic properties of CuNCN, the first nitrogen-based analog of cupric oxide CuO. Our muon-spin relaxation, nuclear magnetic resonance, and electron-spin resonance studies reveal that classical magnetic ordering is absent down to the lowest temperatures. However, a large enhancement of spin correlations and an unexpected inhomogeneous magnetism have been observed below 80 K. We attribute this to a peculiar fragility of the electronic state against weak perturbations due to geometrical frustration, which selects between competing spin-liquid and more conventional frozen states.

11.
J Phys Condens Matter ; 23(4): 045702, 2011 Feb 02.
Article in English | MEDLINE | ID: mdl-21406894

ABSTRACT

The structurally ordered µ-Al(4)Mn complex intermetallic phase with 563 atoms in the giant unit cell shows the typical broken-ergodicity phenomena of a magnetically frustrated spin system. The low-field zero-field-cooled and field-cooled magnetic susceptibilities show splitting below the spin freezing temperature T(f) = 2.7 K. The ac susceptibility exhibits a frequency-dependent cusp, associated with a frequency-dependent freezing temperature T(f)(ν). The decay of the thermoremnant magnetization is logarithmically slow in time and shows a dependence on the aging time t(w) and the cooling field H(fc) typical of an ultraslow out-of-equilibrium dynamics of a nonergodic spin system that approaches thermal equilibrium, but can never reach it on the experimentally accessible time scale. The above features classify the µ-Al(4)Mn complex intermettalic among spin glasses. The origin of frustration of magnetic interactions was found to be geometrical due to the distribution of a significant fraction of Mn spins on triangles with antiferromagnetic coupling. The µ-Al(4)Mn phase is a geometrically frustrated spin glass.

12.
Phys Rev Lett ; 103(14): 147202, 2009 Oct 02.
Article in English | MEDLINE | ID: mdl-19905598

ABSTRACT

The magnetic and ferroelectric properties of the layered geometrically frustrated cluster compound FeTe2O5Br were investigated with single-crystal neutron diffraction and dielectric measurements. An incommensurate transverse amplitude modulated magnetic order with the wave vector q=(1/2,0.463,0) develops below T(N)=10.6(2) K. Simultaneously, a ferroelectric order due to exchange striction involving polarizable Te4+ lone-pair electrons develops perpendicular to q and to Fe3+ magnetic moments. The observed magnetoelectric coupling is proposed to originate from the temperature dependent phase difference between neighboring amplitude modulation waves.

13.
J Phys Condens Matter ; 21(9): 095303, 2009 Mar 04.
Article in English | MEDLINE | ID: mdl-21817386

ABSTRACT

An inhomogeneous system of aggregates of Co(3)O(4) nanocrystallites dispersed in an amorphous SiO(2) matrix has been studied. X-ray diffraction and atomic force microscopy reveal a bimodal distribution of crystallite sizes, smaller nanocrystallites with dimension below 10 nm and larger nanocrystallites of about 20 nm. The Co(3)O(4) nanocrystallites enter the composition of nanograins with dimension 20-60 nm. The nanograins build aggregates with dimension 200-500 nm. A large value of the effective magnetic moment per Co(2+) ion obtained from the high-temperature susceptibility measurements indicates possible disturbance of the normal spinel structure in which a fraction of Co(3+) ions also possesses magnetic moment. An analysis based on the temperature dependence of the coercive field has shown that the smaller nanocrystallites behave as superparamagnetic particles with a blocking temperature of about 10 K. Simultaneous existence of two relaxation processes is observed in the frequency dependence of the imaginary part of the ac magnetic susceptibility in the vicinity of T = 15.8 K. The temperature dependence of the width of the distribution function of relaxation times obtained from the Cole-Cole diagrams exhibits behaviour characteristic for spin glass dynamics in a temperature range above 17.6 K and is temperature independent below 15.8 K, which is a property of superparamagnetic particles. The variation of the width of the distribution function between 17.6 and 15.8 K indicates that interference of the superparamagnetic and spin glass dynamics occurs. It has been found that average relaxation time increases with decreasing temperature from τ(c)<10(-4) s at 17.6 K to 1.5 × 10(-1) s at 15 K. The increase of the average relaxation time with decreasing temperature, the observed blocking temperature of the superparamagnetic moments at about 10 K and interference appearing between the two spin dynamics suggest that the magnetic moments in the smaller as well as in the larger nanocrystallites are subject to a thermally activated blocking process at low temperatures.

14.
J Phys Condens Matter ; 21(21): 215302, 2009 May 27.
Article in English | MEDLINE | ID: mdl-21825545

ABSTRACT

The surface-spin magnetism of the antiferromagnetic (AFM) material NiO in nanoparticle and bulk morphology was investigated by magnetic measurements (temperature-dependent zero-field-cooled (zfc) and field-cooled (fc) dc susceptibility, ac susceptibility and zfc and fc hysteresis loops). We addressed the question of whether the multisublattice ordering of the uncompensated surface spins and the exchange bias (EB) effect are only present in the nanoparticles, originating from their high surface-to-volume ratio or if these surface phenomena are generally present in the AFM materials regardless of their bulky or nanoparticle morphology, but the effect is just too small to be detected experimentally in the bulk due to a very small surface magnetization. Performing experiments on the NiO nanoparticles of different sizes and bulk NiO grains, we show that coercivity enhancement and hysteresis loop shift in the fc experiments, considered to be the key experimental manifestations of multisublattice ordering and the EB effect, are true nanoscale phenomena only present in the nanoparticles and absent in the bulk.

15.
Ultrason Sonochem ; 15(5): 791-8, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18053756

ABSTRACT

Nanoparticles of zinc-doped maghemite were prepared using ultrasonic radiation. As a precursor, a suspension of maghemite in an alkaline aqueous solution of zinc nitrate at pH 9 was sonicated. The zinc-doped maghemite nanoparticles were investigated by X-ray diffraction, Mössbauer spectroscopy, high-resolution electron microscopy (HREM) and SQUID magnetometry. The Mössbauer measurements, which cover the temperature range 4.2 K to room temperature, were acquired in zero field and an applied field of 5 T. The results show that by using ultrasound radiation, zinc Zn2+ can substitute for Fe3+ up to a composition close to zinc ferrite (ZnFe2O4), which has a random distribution of Fe3+ ions over both A and B sublattices in the spinel structure with an inversity parameter of delta=0.322. This leads to a maximum saturation magnetization (Ms) of 64.1 emu/g at 300 K and 73.5 emu/g at 2 K.

16.
Phys Rev Lett ; 90(14): 146401, 2003 Apr 11.
Article in English | MEDLINE | ID: mdl-12731933

ABSTRACT

We report on the very peculiar magnetic properties of an ensemble of very weakly coupled lithium-doped MoS2 nanotubes. The magnetic susceptibility chi of the system is nearly 3 orders of magnitude greater than in typical Pauli metals, yet there is no evidence for any instability which would alleviate this highly frustrated state. Instead, the material exhibits peculiar paramagnetic stability down to very low temperatures, with no evidence of a quantum critical point as T-->0 in spite of clear evidence for strongly correlated electron behavior. The exceptionally weak intertube interactions appear to lead to a realization of a near-ideal one-dimensional state in which fluctuations prevent the system from reordering magnetically or structurally.

SELECTION OF CITATIONS
SEARCH DETAIL
...