Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Vaccines (Basel) ; 12(5)2024 May 04.
Article in English | MEDLINE | ID: mdl-38793748

ABSTRACT

The safety and immunogenicity of the two-dose Ebola vaccine regimen MVA-BN-Filo, Ad26.ZEBOV, 14 days apart, was evaluated in people without HIV (PWOH) and living with HIV (PLWH). In this observer-blind, placebo-controlled, phase 2 trial, healthy adults were randomized (4:1) to receive MVA-BN-Filo (dose 1) and Ad26.ZEBOV (dose 2), or two doses of saline/placebo, administered intramuscularly 14 days apart. The primary endpoints were safety (adverse events (AEs)) and immunogenicity (Ebola virus (EBOV) glycoprotein-specific binding antibody responses). Among 75 participants (n = 50 PWOH; n = 25 PLWH), 37% were female, the mean age was 44 years, and 56% were Black/African American. AEs were generally mild/moderate, with no vaccine-related serious AEs. At 21 days post-dose 2, EBOV glycoprotein-specific binding antibody responder rates were 100% among PWOH and 95% among PLWH; geometric mean antibody concentrations were 6286 EU/mL (n = 36) and 2005 EU/mL (n = 19), respectively. A total of 45 neutralizing and other functional antibody responses were frequently observed. Ebola-specific CD4+ and CD8+ T-cell responses were polyfunctional and durable to at least 12 months post-dose 2. The regimen was well tolerated and generated robust, durable immune responses in PWOH and PLWH. Findings support continued evaluation of accelerated vaccine schedules for rapid deployment in populations at immediate risk. Trial registration: NCT02598388 (submitted 14 November 2015).

2.
AIDS ; 38(3): 373-378, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37916464

ABSTRACT

OBJECTIVE: HIV-1 invades the brain within days post-transmission. This study quantitated cerebrospinal fluid (CSF) white blood cell count (WBC) and investigated whether it associated with plasma and CSF HIV-1 RNA during untreated acute HIV infection (AHI). DESIGN: Seventy participants underwent lumbar puncture during Fiebig stages I-V AHI. METHOD: WBC and HIV-1 RNA with a lower limit of quantification (LLQ) of 80 copies/ml were measured in CSF. RESULTS: Sixty-nine (99%) participants were men, with a median age of 26. Their blood CD4 + and CD8 + T-cell counts were 335 [interquartile range (IQR) 247-553) and 540 (IQR 357-802) cells/µl, respectively. Forty-five (64%) were in Fiebig stages III-V whereas 25 (36%) were in Feibig stages I-II. Fifty-two (74%) experienced acute retroviral syndrome. Median plasma and CSF HIV-1 RNA were 6.10 (IQR 5.15-6.78) and 3.15 (IQR 1.90-4.11) log 10 copies/ml, respectively. Sixteen (23%) CSF samples had HIV-1 RNA below LLQ. Median CSF WBC was 2.5 (IQR 1-8) cells/µl. CSF pleocytosis (WBC >5) was observed in 33% and was only present in CSF samples with detectable HIV-1 RNA. The frequencies of CSF pleocytosis during Fiebig stages III-V and among CSF samples of higher viral load (>1000 copies/ml) were 42 and 45%, respectively. Pleocytosis independently associated with CSF HIV-1 RNA in multivariate analysis [adjusted coefficient: 0.79, 95% confidence interval (CI) 0.41-1.14), P  < 0.001] and a lower plasma to CSF HIV-1 RNA ratio ( P  < 0.001). CONCLUSION: CSF pleocytosis was present in one-third of participants with AHI. It associated with higher CSF HIV-1 RNA and a lower plasma to CSF HIV-1 RNA ratio, suggesting a potential association with HIV-1 neuroinvasion.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Male , Humans , Female , HIV Infections/complications , HIV-1/genetics , Leukocytosis , HIV Seropositivity/complications , RNA, Viral , Viral Load , Cerebrospinal Fluid
3.
PLoS One ; 18(6): e0287576, 2023.
Article in English | MEDLINE | ID: mdl-37384714

ABSTRACT

OBJECTIVE: Validate the performance characteristics of two analyte specific, laboratory developed tests (LDTs) for the quantification of SARS-CoV-2 subgenomic RNA (sgRNA) and viral load on the Hologic Panther Fusion® using the Open Access functionality. METHODS: Custom-designed primers/probe sets targeting the SARS-CoV-2 Envelope gene (E) and subgenomic E were optimized. A 20-day performance validation following laboratory developed test requirements was conducted to assess assay precision, accuracy, analytical sensitivity/specificity, lower limit of detection and reportable range. RESULTS: Quantitative SARS-CoV-2 sgRNA (LDT-Quant sgRNA) assay, which measures intermediates of replication, and viral load (LDT-Quant VLCoV) assay demonstrated acceptable performance. Both assays were linear with an R2 and slope equal to 0.99 and 1.00, respectively. Assay precision was evaluated between 4-6 Log10 with a maximum CV of 2.6% and 2.5% for LDT-Quant sgRNA and LDT-Quant VLCoV respectively. Using negative or positive SARS-CoV-2 human nasopharyngeal swab samples, both assays were accurate (kappa coefficient of 1.00 and 0.92). Common respiratory flora and other viral pathogens were not detected and did not interfere with the detection or quantification by either assay. Based on 95% detection, the assay LLODs were 729 and 1206 Copies/mL for the sgRNA and VL load LDTs, respectively. CONCLUSION: The LDT-Quant sgRNA and LDT-Quant VLCoV demonstrated good analytical performance. These assays could be further investigated as alternative monitoring assays for viral replication; and thus, medical management in clinical settings which could inform isolation/quarantine requirements.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Subgenomic RNA , Viral Load , Biological Assay , RNA
4.
Front Immunol ; 13: 1047277, 2022.
Article in English | MEDLINE | ID: mdl-36505432

ABSTRACT

A major barrier in the use of humanized mice as models of HIV-1 (HIV) infection is the inadequate generation of virus-specific antibody responses. Humanized DRAGA (hDRAGA) mice generate antigen-specific class switched antibodies to several pathogens, but whether they do so in HIV infection and the extent to which their secondary lymphoid tissues (sLT) support germinal center responses is unknown. hDRAGA mice were evaluated for their ability to support HIV replication, generate virus-specific antibody responses, develop splenocyte subsets, and organize sLT architecture. hDRAGA mice supported persistent HIV replication and developed modest levels of gp41-specific human IgM and IgG. Spleens from uninfected and HIV infected hDRAGA mice contained differentiated B and CD4+ T cell subsets including germinal center (GC) B cells and T follicular helper cells (TFH); relative expansions of TFH and CD8+ T cells, but not GC B cells, occurred in HIV-infected hDRAGA mice compared to uninfected animals. Immunofluorescent staining of spleen and mesenteric lymph node sections demonstrated atypical morphology. Most CD4+ and CD8+ T cells resided within CD20hi areas. CD20hi areas lacked canonical germinal centers, as defined by staining for IgD-Ki67+cells. No human follicular dendritic cells (FDC) were detected. Mouse FDC were distributed broadly throughout both CD20hi and CD20lo regions of sLT. HIV RNA particles were detected by in situ hybridization within CD20+ areas and some co-localized with mouse FDC. Viral RNA+ cells were more concentrated within CD20hi compared to CD20lo areas of sLT, but differences were diminished in spleen and eliminated in mesenteric lymph nodes when adjusted for CD4+ cell frequency. Thus, hDRAGA mice recapitulated multiple aspects of HIV pathogenesis including HIV replication, relative expansions in TFH and CD8+ T cells, and modest HIV-specific antibody production. Nevertheless, classical germinal center morphology in sLT was not observed, which may account for the inefficient expansion of GC B cells and generation of low titer human antibody responses to HIV-1 in this model.


Subject(s)
HIV Infections , HIV-1 , Mice , Animals , CD8-Positive T-Lymphocytes , Germinal Center , HIV Antibodies
5.
PLoS One ; 17(11): e0276729, 2022.
Article in English | MEDLINE | ID: mdl-36342921

ABSTRACT

Combining diagnostic specimens into pools has been considered as a strategy to augment throughput, decrease turnaround time, and leverage resources. This study utilized a multi-parametric approach to assess optimum pool size, impact of automation, and effect of nucleic acid amplification chemistries on the detection of SARS-CoV-2 RNA in pooled samples for surveillance testing on the Hologic Panther Fusion® System. Dorfman pooled testing was conducted with previously tested SARS-CoV-2 nasopharyngeal samples using Hologic's Aptima® and Panther Fusion® SARS-CoV-2 Emergency Use Authorization assays. A manual workflow was used to generate pool sizes of 5:1 (five samples: one positive, four negative) and 10:1. An automated workflow was used to generate pool sizes of 3:1, 4:1, 5:1, 8:1 and 10:1. The impact of pool size, pooling method, and assay chemistry on sensitivity, specificity, and lower limit of detection (LLOD) was evaluated. Both the Hologic Aptima® and Panther Fusion® SARS-CoV-2 assays demonstrated >85% positive percent agreement between neat testing and pool sizes ≤5:1, satisfying FDA recommendation. Discordant results between neat and pooled testing were more frequent for positive samples with CT>35. Fusion® CT (cycle threshold) values for pooled samples increased as expected for pool sizes of 5:1 (CT increase of 1.92-2.41) and 10:1 (CT increase of 3.03-3.29). The Fusion® assay demonstrated lower LLOD than the Aptima® assay for pooled testing (956 vs 1503 cp/mL, pool size of 5:1). Lowering the cut-off threshold of the Aptima® assay from 560 kRLU (manufacturer's setting) to 350 kRLU improved the assay sensitivity to that of the Fusion® assay for pooled testing. Both Hologic's SARS-CoV-2 assays met the FDA recommended guidelines for percent positive agreement (>85%) for pool sizes ≤5:1. Automated pooling increased test throughput and enabled automated sample tracking while requiring less labor. The Fusion® SARS-CoV-2 assay, which demonstrated a lower LLOD, may be more appropriate for surveillance testing.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Automation , Sensitivity and Specificity
6.
Vaccines (Basel) ; 10(5)2022 May 04.
Article in English | MEDLINE | ID: mdl-35632473

ABSTRACT

The COVID-19 pandemic has had a staggering impact on social, economic, and public health systems worldwide. Vaccine development and mobilization against SARS-CoV-2 (the etiologic agent of COVID-19) has been rapid. However, novel strategies are still necessary to slow the pandemic, and this includes new approaches to vaccine development and/or delivery that will improve vaccination compliance and demonstrate efficacy against emerging variants. Here, we report on the immunogenicity and efficacy of a SARS-CoV-2 vaccine comprising stabilized, pre-fusion spike protein trimers displayed on a ferritin nanoparticle (SpFN) adjuvanted with either conventional aluminum hydroxide or the Army Liposomal Formulation QS-21 (ALFQ) in a cynomolgus macaque COVID-19 model. Vaccination resulted in robust cell-mediated and humoral responses and a significant reduction in lung lesions following SARS-CoV-2 infection. The strength of the immune response suggests that dose sparing through reduced or single dosing in primates may be possible with this vaccine. Overall, the data support further evaluation of SpFN as a SARS-CoV-2 protein-based vaccine candidate with attention to fractional dosing and schedule optimization.

7.
J Infect Dis ; 226(10): 1743-1752, 2022 11 11.
Article in English | MEDLINE | ID: mdl-35543272

ABSTRACT

BACKGROUND: Laboratory screening for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key mitigation measure to avoid the spread of infection among recruits starting basic combat training in a congregate setting. Because viral nucleic acid can be detected persistently after recovery, we evaluated other laboratory markers to distinguish recruits who could proceed with training from those who were infected. METHODS: Recruits isolated for coronavirus disease 2019 (COVID-19) were serially tested for SARS-CoV-2 subgenomic ribonucleic acid (sgRNA), and viral load (VL) by reverse-transcriptase polymerase chain reaction (RT-PCR), and for anti- SARS-CoV-2. Cluster and quadratic discriminant analyses of results were performed. RESULTS: Among 229 recruits isolated for COVID-19, those with a RT-PCR cycle threshold >30.49 (sensitivity 95%, specificity 96%) or having sgRNA log10 RNA copies/mL <3.09 (sensitivity and specificity 96%) at entry into isolation were likely SARS-CoV-2 uninfected. Viral load >4.58 log10 RNA copies/mL or anti-SARS-CoV-2 signal-to-cutoff ratio <1.38 (VL: sensitivity and specificity 93%; anti-SARS-CoV-2: sensitivity 83%, specificity 79%) had comparatively lower sensitivity and specificity when used alone for discrimination of infected from uninfected. CONCLUSIONS: Orthogonal laboratory assays used in combination with RT-PCR may have utility in determining SARS-CoV-2 infection status for decisions regarding isolation.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , COVID-19 Testing , Sensitivity and Specificity , RNA , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction
8.
Sci Transl Med ; 14(632): eabi5735, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-34914540

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants stresses the continued need for next-generation vaccines that confer broad protection against coronavirus disease 2019 (COVID-19). We developed and evaluated an adjuvanted SARS-CoV-2 spike ferritin nanoparticle (SpFN) vaccine in nonhuman primates. High-dose (50 µg) SpFN vaccine, given twice 28 days apart, induced a Th1-biased CD4 T cell helper response and elicited neutralizing antibodies against SARS-CoV-2 wild-type and variants of concern, as well as against SARS-CoV-1. These potent humoral and cell-mediated immune responses translated into rapid elimination of replicating virus in the upper and lower airways and lung parenchyma of nonhuman primates following high-dose SARS-CoV-2 respiratory challenge. The immune response elicited by SpFN vaccination and resulting efficacy in nonhuman primates supports the utility of SpFN as a vaccine candidate for SARS-causing betacoronaviruses.


Subject(s)
COVID-19 , Nanoparticles , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Ferritins , Humans , Immunity , Macaca mulatta , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
9.
NPJ Vaccines ; 6(1): 129, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34711815

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VOC) requires adequate coverage of vaccine protection. We evaluated whether a SARS-CoV-2 spike ferritin nanoparticle vaccine (SpFN), adjuvanted with the Army Liposomal Formulation QS21 (ALFQ), conferred protection against the Alpha (B.1.1.7), and Beta (B.1.351) VOCs in Syrian golden hamsters. SpFN-ALFQ was administered as either single or double-vaccination (0 and 4 week) regimens, using a high (10 µg) or low (0.2 µg) dose. Animals were intranasally challenged at week 11. Binding antibody responses were comparable between high- and low-dose groups. Neutralizing antibody titers were equivalent against WA1, B.1.1.7, and B.1.351 variants following two high dose vaccinations. Dose-dependent SpFN-ALFQ vaccination protected against SARS-CoV-2-induced disease and viral replication following intranasal B.1.1.7 or B.1.351 challenge, as evidenced by reduced weight loss, lung pathology, and lung and nasal turbinate viral burden. These data support the development of SpFN-ALFQ as a broadly protective, next-generation SARS-CoV-2 vaccine.

10.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: mdl-34470866

ABSTRACT

Emergence of novel variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for next-generation vaccines able to elicit broad and durable immunity. Here we report the evaluation of a ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein (RFN) adjuvanted with Army Liposomal Formulation QS-21 (ALFQ). RFN vaccination of macaques using a two-dose regimen resulted in robust, predominantly Th1 CD4+ T cell responses and reciprocal peak mean serum neutralizing antibody titers of 14,000 to 21,000. Rapid control of viral replication was achieved in the upper and lower airways of animals after high-dose SARS-CoV-2 respiratory challenge, with undetectable replication within 4 d in seven of eight animals receiving 50 µg of RFN. Cross-neutralization activity against SARS-CoV-2 variant B.1.351 decreased only approximately twofold relative to WA1/2020. In addition, neutralizing, effector antibody and cellular responses targeted the heterotypic SARS-CoV-1, highlighting the broad immunogenicity of RFN-ALFQ for SARS-CoV-like Sarbecovirus vaccine development.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/virology , Macaca mulatta/immunology , Nanoparticles/chemistry , Receptors, Virus/metabolism , SARS-CoV-2/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Ferritins/chemistry , SARS-CoV-2/metabolism , T-Lymphocytes/immunology
11.
bioRxiv ; 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34159328

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VOC) requires adequate coverage of vaccine protection. We evaluated whether a spike ferritin nanoparticle vaccine (SpFN), adjuvanted with the Army Liposomal Formulation QS21 (ALFQ), conferred protection against the B.1.1.7 and B.1.351 VOCs in Syrian golden hamsters. SpFN-ALFQ was administered as either single or double-vaccination (0 and 4 week) regimens, using a high (10 µg) or low (0.2 µg) immunogen dose. Animals were intranasally challenged at week 11. Binding antibody responses were comparable between high- and low-dose groups. Neutralizing antibody titers were equivalent against WA1, B.1.1.7, and B.1.351 variants following two high dose two vaccinations. SpFN-ALFQ vaccination protected against SARS-CoV-2-induced disease and viral replication following intranasal B.1.1.7 or B.1.351 challenge, as evidenced by reduced weight loss, lung pathology, and lung and nasal turbinate viral burden. These data support the development of SpFN-ALFQ as a broadly protective, next-generation SARS-CoV-2 vaccine.

12.
bioRxiv ; 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33851155

ABSTRACT

Emergence of novel variants of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) underscores the need for next-generation vaccines able to elicit broad and durable immunity. Here we report the evaluation of a ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein (RFN) adjuvanted with Army Liposomal Formulation QS-21 (ALFQ). RFN vaccination of macaques using a two-dose regimen resulted in robust, predominantly Th1 CD4+ T cell responses and reciprocal peak mean neutralizing antibody titers of 14,000-21,000. Rapid control of viral replication was achieved in the upper and lower airways of animals after high-dose SARS-CoV-2 respiratory challenge, with undetectable replication within four days in 7 of 8 animals receiving 50 µg RFN. Cross-neutralization activity against SARS-CoV-2 variant B.1.351 decreased only ∼2-fold relative to USA-WA1. In addition, neutralizing, effector antibody and cellular responses targeted the heterotypic SARS-CoV-1, highlighting the broad immunogenicity of RFN-ALFQ for SARS-like betacoronavirus vaccine development. SIGNIFICANCE STATEMENT: The emergence of SARS-CoV-2 variants of concern (VOC) that reduce the efficacy of current COVID-19 vaccines is a major threat to pandemic control. We evaluate a SARS-CoV-2 Spike receptor-binding domain ferritin nanoparticle protein vaccine (RFN) in a nonhuman primate challenge model that addresses the need for a next-generation, efficacious vaccine with increased pan-SARS breadth of coverage. RFN, adjuvanted with a liposomal-QS21 formulation (ALFQ), elicits humoral and cellular immune responses exceeding those of current vaccines in terms of breadth and potency and protects against high-dose respiratory tract challenge. Neutralization activity against the B.1.351 VOC within two-fold of wild-type virus and against SARS-CoV-1 indicate exceptional breadth. Our results support consideration of RFN for SARS-like betacoronavirus vaccine development.

13.
bioRxiv ; 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33791694

ABSTRACT

The emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants stresses the continued need for next-generation vaccines that confer broad protection against coronavirus disease 2019 (COVID-19). We developed and evaluated an adjuvanted SARS-CoV-2 Spike Ferritin Nanoparticle (SpFN) vaccine in nonhuman primates (NHPs). High-dose (50 µ g) SpFN vaccine, given twice within a 28 day interval, induced a Th1-biased CD4 T cell helper response and a peak neutralizing antibody geometric mean titer of 52,773 against wild-type virus, with activity against SARS-CoV-1 and minimal decrement against variants of concern. Vaccinated animals mounted an anamnestic response upon high-dose SARS-CoV-2 respiratory challenge that translated into rapid elimination of replicating virus in their upper and lower airways and lung parenchyma. SpFN's potent and broad immunogenicity profile and resulting efficacy in NHPs supports its utility as a candidate platform for SARS-like betacoronaviruses. ONE-SENTENCE SUMMARY: A SARS-CoV-2 Spike protein ferritin nanoparticle vaccine, co-formulated with a liposomal adjuvant, elicits broad neutralizing antibody responses that exceed those observed for other major vaccines and rapidly protects against respiratory infection and disease in the upper and lower airways and lung tissue of nonhuman primates.

14.
Clin Infect Dis ; 73(7): e2311-e2322, 2021 10 05.
Article in English | MEDLINE | ID: mdl-32785695

ABSTRACT

BACKGROUND: Emerging HIV drug resistance (HIVDR) could jeopardize the success of standardized HIV management protocols in resource-limited settings. We characterized HIVDR among antiretroviral therapy (ART)-naive and experienced participants in the African Cohort Study (AFRICOS). METHODS: From January 2013 to April 2019, adults with HIV-1 RNA >1000 copies/mL underwent ART history review and HIVDR testing upon enrollment at 12 clinics in Uganda, Kenya, Tanzania, and Nigeria. We calculated resistance scores for specific drugs and tallied major mutations to non-nucleoside reverse transcriptase inhibitors (NNRTIs), nucleoside reverse transcriptase inhibitors (NRTIs), and protease inhibitors (PIs) using Stanford HIVDB 8.8 and SmartGene IDNS software. For ART-naive participants, World Health Organization surveillance drug resistance mutations (SDRMs) were noted. RESULTS: HIVDR testing was performed on 972 participants with median age 35.7 (interquartile range [IQR] 29.7-42.7) years and median CD4 295 (IQR 148-478) cells/mm3. Among 801 ART-naive participants, the prevalence of SDRMs was 11.0%, NNRTI mutations 8.2%, NRTI mutations 4.7%, and PI mutations 0.4%. Among 171 viremic ART-experienced participants, NNRTI mutation prevalence was 83.6%, NRTI 67.8%, and PI 1.8%. There were 90 ART-experienced participants with resistance to both efavirenz and lamivudine, 33 (36.7%) of whom were still prescribed these drugs. There were 10 with resistance to both tenofovir and lamivudine, 8 (80.0%) of whom were prescribed these drugs. CONCLUSIONS: Participants on failing ART regimens had a high burden of HIVDR that potentially limited the efficacy of standardized first- and second-line regimens. Management strategies that emphasize adherence counseling while delaying ART switch may promote drug resistance and should be reconsidered.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Adult , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Cohort Studies , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV-1/genetics , Humans , Mutation , Uganda , Viral Load
15.
AIDS ; 35(5): 777-782, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33306551

ABSTRACT

OBJECTIVE: Despite suppression of HIV-1 replication in the periphery by antiretroviral therapy (ART), up to 10% of treated individuals have quantifiable HIV-1 in the CSF, termed CSF escape. CSF escape may be asymptomatic but has also been linked to progressive neurological disease, and may indicate persistence of HIV in the central nervous system (CNS). CSF escape has not yet been assessed after initiation of ART during acute HIV-1 infection (AHI). DESIGN: Prospective cohort study. SETTING: Major voluntary counseling and testing site in Bangkok, Thailand. PARTICIPANTS: Participants identified and initiated on ART during AHI who received an optional study lumbar puncture at pre-ART baseline or after 24 or 96 weeks of ART. MAIN OUTCOME MEASURES: Paired levels of CSF and plasma HIV-1 RNA, with CSF greater than plasma HIV-1 RNA defined as CSF escape. RESULTS: Two hundred and four participants had paired blood and CSF sampling in at least one visit at baseline, week 24, or week 96. Twenty-nine participants had CSF sampling at all three visits. CSF escape was detected in 1/90 at week 24 (CSF HIV-1 RNA 2.50 log10 copies/ml, plasma HIV-1 RNA <50 copies/ml), and 0/55 at week 96. CONCLUSION: Although levels of CSF HIV-1 RNA in untreated AHI are high, initiating treatment during AHI results in a very low rate of CSF escape in the first 2 years of treatment. Early treatment may improve control of HIV-1 within the CNS compared with treatment during chronic infection, which may have implications for long-term neurological outcomes and CNS HIV-1 persistence.


Subject(s)
HIV Infections , HIV-1 , Anti-Retroviral Agents/therapeutic use , Cerebrospinal Fluid , HIV Infections/drug therapy , HIV-1/genetics , Humans , Prospective Studies , RNA, Viral , Thailand , Viral Load
16.
Clin Infect Dis ; 73(7): e1885-e1892, 2021 10 05.
Article in English | MEDLINE | ID: mdl-32916708

ABSTRACT

BACKGROUND: The central nervous system (CNS) is a likely reservoir of human immunodeficiency virus (HIV), vulnerable to viral rebound, inflammation, and clinical changes upon stopping antiretroviral therapy (ART). It is critical to evaluate the CNS safety of studies using analytic treatment interruption (ATI) to assess HIV remission. METHODS: Thirty participants who started ART during acute HIV infection underwent CNS assessments across 4 ATI remission trials. ART resumption occurred with plasma viral load >1000 copies/mL. CNS measures included paired pre- vs post-ATI measures of mood, cognitive performance, and neurologic examination, with elective cerebrospinal fluid (CSF) sampling, brain diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS). RESULTS: Median participant age was 30 years old and 29/30 were male. Participants' median time on ART before ATI was 3 years, and ATI lasted a median of 35 days. Post-ATI, there were no differences in median mood scores or neurologic findings and cognitive performance improved modestly. During ATI, a low level of CSF HIV-1 RNA was detectable in 6 of 20 participants with plasma viremia, with no group changes in CSF immune activation markers or brain DTI measures. Mild worsening was identified in post-ATI basal ganglia total choline MRS, suggesting an alteration in neuronal membranes. CONCLUSION: No adverse CNS effects were observed with brief, closely monitored ATI in participants with acutely treated HIV, except an MRS alteration in basal ganglia choline. Further studies are needed to assess CNS ATI safety in HIV remission trials, particularly for studies using higher thresholds to restart ART and longer ATI durations.


Subject(s)
HIV Infections , Adult , Anti-Retroviral Agents/therapeutic use , Central Nervous System , Diffusion Tensor Imaging , HIV , HIV Infections/drug therapy , Humans , Male , Viral Load
17.
Mil Med ; 185(9-10): e1654-e1661, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32648931

ABSTRACT

INTRODUCTION: Knowledge of the contemporary epidemiology of hepatitis B virus (HBV) infection among military personnel can inform potential Department of Defense (DoD) screening policy and infection and disease control strategies. MATERIALS AND METHODS: HBV infection status at accession and following deployment was determined by evaluating reposed serum from 10,000 service members recently deployed to combat operations in Iraq and Afghanistan in the period from 2007 to 2010. A cost model was developed from the perspective of the Department of Defense for a program to integrate HBV infection screening of applicants for military service into the existing screening program of screening new accessions for vaccine-preventable infections. RESULTS: The prevalence of chronic HBV infection at accession was 2.3/1,000 (95% CI: 1.4, 3.2); most cases (16/21, 76%) identified after deployment were present at accession. There were 110 military service-related HBV infections identified. Screening accessions who are identified as HBV susceptible with HBV surface antigen followed by HBV surface antigen neutralization for confirmation offered no cost advantage over not screening and resulted in a net annual increase in cost of $5.78 million. However, screening would exclude as many as 514 HBV cases each year from accession. CONCLUSIONS: Screening for HBV infection at service entry would potentially reduce chronic HBV infection in the force, decrease the threat of transfusion-transmitted HBV infection in the battlefield blood supply, and lead to earlier diagnosis and linkage to care; however, applicant screening is not cost saving. Service-related incident infections indicate a durable threat, the need for improved laboratory-based surveillance tools, and mandate review of immunization policy and practice.


Subject(s)
Hepatitis B , Military Personnel , Adult , Afghanistan , Female , Hepatitis B/diagnosis , Hepatitis B/epidemiology , Humans , Iraq , Male , Mass Screening , Prevalence , Seroepidemiologic Studies
18.
PLoS One ; 15(2): e0229424, 2020.
Article in English | MEDLINE | ID: mdl-32109949

ABSTRACT

Management of Human Immunodeficiency Virus Type 2 (HIV-2) infections present unique challenges due to low viral titers, slow disease progression, and poor response to standard antiviral therapies. The need for a nucleic acid assay to detect and quantify HIV-2 virus has led to the development of a number of molecular-based assays for detection and/or quantification of HIV-2 viral RNA in plasma in order to provide laboratory evidence of HIV-2 infection and viral loads for use in treatment decisions. As HIV-2 is less pathogenic and transmissible than HIV-1 and has resistance to several of the antiretroviral drugs, delay of treatment is common. Cross sero-reactivity between HIV-1 and HIV-2 makes it difficult to distinguish between the two viruses based upon serological tests. As such we developed a quantitative reverse transcription PCR (qRT-PCR) assay targeting the 5' long terminal repeat of HIV-2 for detection and quantification of HIV-2 viral RNA in plasma to identify HIV-2 infection and for use in viral load monitoring. Serial dilutions of cultured HIV-2 virus demonstrated a wide dynamic range (10 to 100,000 copies/ml) with excellent reproducibility (standard deviation from 0.12-0.19), linearity (R2 = 0.9994), and a lower limit of detection at 79 copies/ml (NIH-Z). The assay is highly specific for HIV-2 Groups A and B and exhibits no cross reactivity to HIV-1, HBV or HCV. Precision of the assay was demonstrated for the High (Mean = 6.41; SD = 0.12) and Medium (Mean = 4.46; SD = 0.13) HIV-2 positive controls. Replicate testing of clinical specimens showed good reproducibility above 1,000 copies/ml, with higher variability under 1,000 copies/ml. Analysis of 220 plasma samples from HIV-2 infected West African individuals demonstrated significantly lower viral loads than those observed in HIV-1 infections, consistent with results of previous studies. Slightly more than seven percent of clinical samples (7.3%) demonstrated viral loads above 100,000 copies/ml, while 37.3% of samples were undetectable. The high sensitivity, specificity, precision, and linearity of the WRAIR qRT-PCR assay makes it well suited for detection and monitoring of HIV-2 RNA levels in plasma of infected individuals.


Subject(s)
HIV Infections/diagnosis , HIV-1/genetics , HIV-2/genetics , Laboratories/standards , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Serologic Tests/standards , Case-Control Studies , HIV Infections/blood , HIV Infections/virology , HIV-1/isolation & purification , HIV-2/isolation & purification , Humans , RNA, Viral/blood , Reagent Kits, Diagnostic , Viral Load
19.
AIDS ; 34(3): 415-426, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31725432

ABSTRACT

OBJECTIVE: To assess changes in regional brain volumes after 24 months among individuals who initiated combination antiretroviral therapy (cART) within weeks of HIV exposure. DESIGN: Prospective cohort study of Thai participants in the earliest stages of HIV-1infection. METHODS: Thirty-four acutely HIV-infected individuals (AHI; Fiebig I-V) underwent brain magnetic resonance (MR) imaging and MR spectroscopy at 1.5 T and immediately initiated cART. Imaging was repeated at 24 months. Regional brain volumes were quantified using FreeSurfer's longitudinal pipeline. Voxel-wise analyses using tensor-based morphometry (TBM) were conducted to verify regional assessments. Baseline brain metabolite levels, blood and cerebrospinal fluid biomarkers assessed by ELISA, and peripheral blood monocyte phenotypes measured by flow cytometry were examined as predictors of significant volumetric change. RESULTS: Participants were 31 ±â€Š8 years old. The estimated mean duration of infection at cART initiation was 15 days. Longitudinal analyses revealed reductions in volumes of putamen (P < 0.001) and caudate (P = 0.006). TBM confirmed significant atrophy in the putamen and caudate, and also in thalamic and hippocampal regions. In exploratory post-hoc analyses, higher baseline frequency of P-selectin glycoprotein ligand-1 (PSGL-1)-expressing total monocytes correlated with greater caudate volumetric decrease (ρ = 0.67, P = 0.017), whereas the baseline density of PSGL-1-expressing inflammatory (CD14CD16) monocytes correlated with putamen atrophy (ρ = 0.65, P = 0.022). CONCLUSION: Suppressive cART initiated during AHI may not prevent brain atrophy. Volumetric decrease appears greater than expected age-related decline, although examination of longitudinal change in demographically similar HIV-uninfected Thai individuals is needed. Mechanisms underlying progressive HIV-related atrophy may include early activation and enhanced adhesive and migratory capacity of circulating monocyte populations.


Subject(s)
Brain , HIV Infections , Adult , Brain/anatomy & histology , Brain/diagnostic imaging , HIV Infections/complications , HIV Infections/drug therapy , Humans , Magnetic Resonance Imaging , Male , Organ Size , Prospective Studies , Thailand , Young Adult
20.
Cells ; 8(8)2019 08 15.
Article in English | MEDLINE | ID: mdl-31443253

ABSTRACT

HIV-1 disseminates to a broad range of tissue compartments during acute HIV-1 infection (AHI). The central nervous system (CNS) can serve as an early and persistent site of viral replication, which poses a potential challenge for HIV-1 remission strategies that target the HIV reservoir. CNS compartmentalization is a key feature of HIV-1 neuropathogenesis. Thus far, the timing of how early CNS compartmentalization develops after infection is unknown. We examined whether HIV-1 transmitted/founder (T/F) viruses differ between CNS and blood during AHI using single-genome sequencing of envelope gene and further examined subregions in pol and env using next-generation sequencing in paired plasma and cerebrospinal fluid (CSF) from 18 individuals. Different proportions of mostly minor variants were found in six of the eight multiple T/F-infected individuals, indicating enrichment of some variants in CSF that may lead to significant compartmentalization in the later stages of infection. This study provides evidence for the first time that HIV-1 compartmentalization in the CNS can occur within days of HIV-1 exposure in multiple T/F infections. Further understanding of factors that determine enrichment of T/F variants in the CNS, as well as potential long-term implications of these findings for persistence of HIV-1 reservoirs and neurological impairment in HIV, is needed.


Subject(s)
Genes, env/genetics , Genes, pol/genetics , HIV Infections , HIV-1 , RNA, Viral/blood , Adult , Female , HIV Infections/blood , HIV Infections/cerebrospinal fluid , HIV-1/genetics , HIV-1/physiology , High-Throughput Nucleotide Sequencing , Humans , Male , Sequence Analysis, RNA , Virus Replication , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...