Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Healthc Mater ; : e2303912, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470994

ABSTRACT

Spinal cord injury (SCI) is a serious condition with limited treatment options. Neural progenitor cell (NPC) transplantation is a promising treatment option, and the identification of novel biomaterial scaffolds that support NPC engraftment and therapeutic activity is a top research priority. The objective of this study is to evaluate in situ assembled poly (ethylene glycol) (PEG)-based granular hydrogels for NPC delivery in a murine model of SCI. Microgel precursors are synthesized by using thiol-norbornene click chemistry to react four-armed PEG-amide-norbornene with enzymatically degradable and cell adhesive peptides. Unreacted norbornene groups are utilized for in situ assembly into scaffolds using a PEG-di-tetrazine linker. The granular hydrogel scaffolds exhibit good biocompatibility and do not adversely affect the inflammatory response after SCI. Moreover, when used to deliver NPCs, the granular hydrogel scaffolds supported NPC engraftment, do not adversely affect the immune response to the NPC grafts, and successfully support graft differentiation toward neuronal or astrocytic lineages as well as axonal extension into the host tissue. Collectively, these data establish PEG-based granular hydrogel scaffolds as a suitable biomaterial platform for NPC delivery and justify further testing, particularly in the context of more severe SCI.

2.
Front Neurosci ; 18: 1349446, 2024.
Article in English | MEDLINE | ID: mdl-38510468

ABSTRACT

Spinal cord injury (SCI) substantially reduces the quality of life of affected individuals. Recovery of function is therefore a primary concern of the patient population and a primary goal for therapeutic interventions. Currently, even with growing numbers of clinical trials, there are still no effective treatments that can improve neurological outcomes after SCI. A large body of work has demonstrated that transplantation of neural stem/progenitor cells (NSPCs) can promote regeneration of the injured spinal cord by providing new neurons that can integrate into injured host neural circuitry. Despite these promising findings, the degree of functional recovery observed after NSPC transplantation remains modest. It is evident that treatment of such a complex injury cannot be addressed with a single therapeutic approach. In this mini-review, we discuss combinatorial strategies that can be used along with NSPC transplantation to promote spinal cord regeneration. We begin by introducing bioengineering and neuromodulatory approaches, and highlight promising work using these strategies in integration with NSPCs transplantation. The future of NSPC transplantation will likely include a multi-factorial approach, combining stem cells with biomaterials and/or neuromodulation as a promising treatment for SCI.

3.
eNeuro ; 9(6)2022.
Article in English | MEDLINE | ID: mdl-36265906

ABSTRACT

Hb9 (Mnx1) is a transcription factor described as a spinal cord motor neuron (MN)-specific marker and critical factor for the postmitotic specification of these cells. To date, expression of Hb9 in other cell types has not been reported. We performed a fate-mapping approach to examine distributions of Hb9-expressing cells and their progeny ("Hb9-lineage cells") within the embryonic and adult spinal cord of Hb9cre;Ai14 mice. We found that Hb9-lineage cells are distributed in a gradient of increasing abundance throughout the rostrocaudal spinal cord axis during embryonic and postnatal stages. Furthermore, although the majority of Hb9-lineage cells at cervical spinal cord levels are MNs, at more caudal levels, Hb9-lineage cells include small-diameter dorsal horn neurons, astrocytes, and oligodendrocytes. In the peripheral nervous system, we observed a similar phenomenon with more abundant Hb9-lineage Schwann cells in muscles of the lower body versus upper body muscles. We cultured spinal cord progenitors in vitro and found that gliogenesis was increased by treatment with the caudalizing factor FGF-8B, while glial tdTomato expression was increased by treatment with both FGF-8B and GDF-11. Together, these observations suggest that early and transient expression of Hb9 in spinal cord neural progenitors may be induced by caudalizing factors such as FGF and GDF signaling. Furthermore, our work raises the possibility that early Hb9 expression may influence the development of spinal cord macroglia and Schwann cells, especially at caudal regions. Together, these findings highlight the importance of using caution when designing experiments using Hb9cre mice to perform spinal cord MN-specific manipulations.


Subject(s)
Spinal Cord , Transcription Factors , Mice , Animals , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Lineage/physiology , Mice, Transgenic , Spinal Cord/metabolism , Motor Neurons/physiology , Homeodomain Proteins/metabolism
4.
Virus Res ; 295: 198279, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33387603

ABSTRACT

Psittacine beak and feather disease (PBFD), caused by beak and feather disease virus (BFDV) is a highly contagious disease in wild and captive psittacine populations and has an almost global presence. However, the BFDV infection in Saudi Arabia remains largely unknown. In the present study, we report the full genome sequence of BFDV strains from Saudi Arabia and its genetic diversity. The complete genome sequences were analyzed for 14 BFDV-infected birds representing 6 psittacine species. The complete genome sequence of BFDV strains was compared with 201 previously reported sequences to evaluate their diversity and possible recombination events, if any. Our analysis revealed that newly sequenced BFDV genomes from Saudi Arabia belonged to six different strains. Phylogenetic analysis suggested that the isolated BFDV genomes were highly recombinant with a high degree of diversity. It is evident from the study that psittacine species in Saudi Arabia are at risk from the spread of BFDV. As per the CITES trade database, about 190,000 parrots have been imported to Saudi Arabia since 1975 over a thousand instances. Presumably, during any of these trade events or unregulated trade of birds has predisposed the introduction of BFDV to Saudi Arabia. Understanding the epidemiology of BFDV is necessitated to address the threat posed by the virus to the psittacine population of Saudi Arabia.


Subject(s)
Bird Diseases , Circoviridae Infections , Circovirus , Psittaciformes , Animals , Beak , Bird Diseases/epidemiology , Birds , Circoviridae Infections/epidemiology , Circoviridae Infections/genetics , Circoviridae Infections/veterinary , Genome, Viral , Phylogeny , Psittaciformes/genetics , Saudi Arabia/epidemiology
5.
Infect Genet Evol ; 84: 104382, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32473352

ABSTRACT

The 2019 novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak has caused a large number of deaths, with thousands of confirmed cases worldwide. The present study followed computational approaches to identify B- and T-cell epitopes for the spike (S) glycoprotein of SARS-CoV-2 by its interactions with the human leukocyte antigen alleles. We identified 24 peptide stretches on the SARS-CoV-2 S protein that are well conserved among the reported strains. The S protein structure further validated the presence of predicted peptides on the surface, of which 20 are surface exposed and predicted to have reasonable epitope binding efficiency. The work could be useful for understanding the immunodominant regions in the surface protein of SARS-CoV-2 and could potentially help in designing some peptide-based diagnostics. Also, identified T-cell epitopes might be considered for incorporation in vaccine designs.


Subject(s)
Betacoronavirus/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/chemistry , Genome, Viral/immunology , HLA Antigens/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Amino Acid Sequence , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , Binding Sites , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/metabolism , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/metabolism , Gene Expression , HLA Antigens/genetics , HLA Antigens/metabolism , Humans , Immunodominant Epitopes/chemistry , Immunodominant Epitopes/genetics , Immunodominant Epitopes/metabolism , Models, Molecular , Pandemics/prevention & control , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL