Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 287
Filter
1.
Ann Neurol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747315

ABSTRACT

OBJECTIVE: Cross-sectional definitions of successful cognitive aging have been widely utilized, but longitudinal measurements can identify people who do not decline. We performed this study to contrast maintenance with declining trajectories, including clinical conversion. METHODS: We included baseline cognitively unimpaired Alzheimer's Disease Neuroimaging Initiative participants with 3 or more cognitive testing sessions (n = 539, follow-up 6.1 ± 3.5 years) and calculated slopes of an episodic memory composite (MEM) to classify them into two groups: maintainers (slope ≥ 0) and decliners (slope < 0). Within decliners, we examined a subgroup of individuals who became clinically impaired during follow-up. These groups were compared on baseline characteristics and cognitive performance, as well as both cross-sectional and longitudinal Alzheimer disease (AD) biomarker measures (beta-amyloid [Aß], tau, and hippocampal volume). RESULTS: Forty-one percent (n = 221) of the cohort were MEM maintainers, and 33% (n = 105) of decliners converted to clinical impairment during follow-up. Compared to those with superior baseline scores, maintainers had lower education and were more likely to be male. Maintainers and decliners did not differ on baseline MEM scores, but maintainers did have higher non-MEM cognitive scores. Maintainers had lower baseline global Aß, lower tau pathology, and larger hippocampal volumes than decliners, even after removing converters. There were no differences in rates of change of any AD biomarkers between any cognitive trajectory groups except for a higher rate of hippocampal atrophy in clinical converters compared to maintainers. INTERPRETATION: Using longitudinal data to define cognitive trajectory groups reduces education and sex bias and reveals the prognostic importance of early onset of accumulation of AD pathology. ANN NEUROL 2024.

2.
J Sci Med Sport ; 27(6): 402-407, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38664148

ABSTRACT

OBJECTIVES: To investigate if higher baseline physical activity levels are associated with less ß-amyloid burden and whether the ApoE4 genotype moderates this association cross-sectionally and longitudinally. DESIGN: Prospective cohort study. METHODS: 204 cognitively normal older adults (74.5 ±â€¯6.6 years; 26 % ApoE4-carrier) were analyzed. Baseline physical activity was measured using the Minnesota Physical Activity Questionnaire. Brain ß-amyloid burden was measured with positron emission tomography using 11C-labeled Pittsburgh compound. A subsample of 128 participants underwent longitudinal positron emission tomography (2.0 ±â€¯0.9 scans over 5 ±â€¯3 years). Statistical analysis was run according to physical activity (high/low group) and the ApoE4 genotype (carrier/noncarrier). RESULTS: The ApoE4 genotype moderated the relationship between physical activity and ß-amyloid, such that low physical activity had a greater impact on ß-amyloid deposition in ApoE4-carriers than noncarriers. This ApoE4 × physical activity effect on brain ß-amyloid deposition was also observed when all available ß-amyloid scan timepoints were included in the model. ß-amyloid deposition increased over time (p < 0.001), and ApoE4-carriers had disproportionately greater ß-amyloid accumulation than ApoE4-noncarriers. The lower physical activity group had marginally greater ß-amyloid accumulation than the higher physical activity group (p = 0.099), but there was no significant ApoE4 effect on ß-amyloid accumulation. CONCLUSIONS: Low physical activity in combination with the ApoE4-carrier genotype is associated with increased ß-amyloid burden, suggesting that ApoE4 moderates the effect of physical activity on ß-amyloid load. However, this effect was insufficient for baseline physical activity to modulate the change in ß-amyloid accumulation over time.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Apolipoprotein E4 , Brain , Exercise , Positron-Emission Tomography , Humans , Apolipoprotein E4/genetics , Amyloid beta-Peptides/metabolism , Male , Aged , Exercise/physiology , Female , Alzheimer Disease/prevention & control , Alzheimer Disease/metabolism , Prospective Studies , Brain/metabolism , Brain/diagnostic imaging , Aged, 80 and over , Genotype , Cross-Sectional Studies , Longitudinal Studies
3.
J Nucl Med ; 65(5): 670-678, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38514082

ABSTRACT

Since the development of amyloid tracers for PET imaging, there has been interest in quantifying amyloid burden in the brains of patients with Alzheimer disease. Quantitative amyloid PET imaging is poised to become a valuable approach in disease staging, theranostics, monitoring, and as an outcome measure for interventional studies. Yet, there are significant challenges and hurdles to overcome before it can be implemented into widespread clinical practice. On November 17, 2022, the U.S. Food and Drug Administration, Society of Nuclear Medicine and Molecular Imaging, and Medical Imaging and Technology Alliance cosponsored a public workshop comprising experts from academia, industry, and government agencies to discuss the role of quantitative brain amyloid PET imaging in staging, prognosis, and longitudinal assessment of Alzheimer disease. The workshop discussed a range of topics, including available radiopharmaceuticals for amyloid imaging; the methodology, metrics, and analytic validity of quantitative amyloid PET imaging; its use in disease staging, prognosis, and monitoring of progression; and challenges facing the field. This report provides a high-level summary of the presentations and the discussion.


Subject(s)
Amyloid , Brain , Positron-Emission Tomography , Humans , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/metabolism , Amyloid/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism
4.
J Neurosci ; 44(16)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38383497

ABSTRACT

Recent work suggests that indentations of the cerebral cortex, or sulci, may be uniquely vulnerable to atrophy in aging and Alzheimer's disease (AD) and that the posteromedial cortex (PMC) is particularly vulnerable to atrophy and pathology accumulation. However, these studies did not consider small, shallow, and variable tertiary sulci that are located in association cortices and are often associated with human-specific aspects of cognition. Here, we manually defined 4,362 PMC sulci in 432 hemispheres in 216 human participants (50.5% female) and found that these smaller putative tertiary sulci showed more age- and AD-related thinning than larger, more consistent sulci, with the strongest effects for two newly uncovered sulci. A model-based approach relating sulcal morphology to cognition identified that a subset of these sulci was most associated with memory and executive function scores in older adults. These findings lend support to the retrogenesis hypothesis linking brain development and aging and provide new neuroanatomical targets for future studies of aging and AD.


Subject(s)
Alzheimer Disease , Humans , Female , Aged , Male , Alzheimer Disease/pathology , Cerebral Cortex/pathology , Aging/pathology , Cognition , Atrophy/pathology , Magnetic Resonance Imaging
5.
Alzheimers Dement ; 20(4): 2526-2537, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38334195

ABSTRACT

INTRODUCTION: Amyloid beta (Aß) and tau pathology are cross-sectionally associated with atrophy and cognitive decline in aging and Alzheimer's disease (AD). METHODS: We investigated relationships between concurrent longitudinal measures of Aß (Pittsburgh compound B [PiB] positron emission tomography [PET]), tau (flortaucipir [FTP] PET), atrophy (structural magnetic resonance imaging), episodic memory (EM), and non-memory (NM) in 78 cognitively healthy older adults (OA). RESULTS: Entorhinal FTP change was correlated with EM decline regardless of Aß, but meta-temporal FTP and global PiB change were only associated with EM and NM decline in Aß+ OA. Voxel-wise analyses revealed significant associations between temporal lobe FTP change and EM decline in all groups. PiB and FTP change were not associated with structural change, suggesting a functional or microstructural mechanism linking these measures to cognitive decline. DISCUSSION: Our results show that longitudinal Aß is linked to cognitive decline only in the presence of elevated Aß, but longitudinal temporal lobe tau is associated with memory decline regardless of Aß status. HIGHLIGHTS: Entorhinal tau change was associated with memory decline in older adults (OA), regardless of amyloid beta (Aß). Greater meta-region of interest (ROI) tau change correlated with memory decline in Aß+ OA. Voxel-wise temporal tau change correlated with memory decline, regardless of Aß. Meta-ROI tau and global amyloid change correlated with non-memory change in Aß+ OA. Tau and amyloid accumulation were not associated with structural change in OA.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Humans , Aging/pathology , Amyloid , Amyloid beta-Peptides , Atrophy , Cognitive Dysfunction/diagnostic imaging , Magnetic Resonance Imaging , Memory Disorders , Positron-Emission Tomography , tau Proteins
6.
Alzheimers Dement ; 20(3): 2113-2127, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38241084

ABSTRACT

INTRODUCTION: Abnormal amyloid-beta (Aß) and tau deposition define Alzheimer's Disease (AD), but non-elevated tau is relatively frequent in patients on the AD pathway. METHODS: We examined characteristics and regional patterns of 397 Aß+ unimpaired and impaired individuals with low tau (A+T-) in relation to their higher tau counterparts (A+T+). RESULTS: Seventy-one percent of Aß+ unimpaired and 42% of impaired Aß+ individuals were categorized as A+T- based on global tau. In impaired individuals only, A+T- status was associated with older age, male sex, and greater cardiovascular risk. α-synuclein was linked to poorer cognition, particularly when tau was low. Tau burden was most frequently elevated in a common set of temporal regions regardless of T+/T- status. DISCUSSION: Low tau is relatively common in patients on the AD pathway and is linked to comorbidities that contribute to impairment. These findings have implications for the selection of individuals for Aß- and tau-modifying therapies.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Male , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Cognition , Positron-Emission Tomography , tau Proteins/metabolism , Female
7.
Alzheimers Dement ; 20(1): 341-355, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37614157

ABSTRACT

INTRODUCTION: There is no consensus on either the definition of successful cognitive aging (SA) or the underlying neural mechanisms. METHODS: We examined the agreement between new and existing definitions using: (1) a novel measure, the cognitive age gap (SA-CAG, cognitive-predicted age minus chronological age), (2) composite scores for episodic memory (SA-EM), (3) non-memory cognition (SA-NM), and (4) the California Verbal Learning Test (SA-CVLT). RESULTS: Fair to moderate strength of agreement was found between the four definitions. Most SA groups showed greater cortical thickness compared to typical aging (TA), especially in the anterior cingulate and midcingulate cortices and medial temporal lobes. Greater hippocampal volume was found in all SA groups except SA-NM. Lower entorhinal 18 F-Flortaucipir (FTP) uptake was found in all SA groups. DISCUSSION: These findings suggest that a feature of SA, regardless of its exact definition, is resistance to tau pathology and preserved cortical integrity, especially in the anterior cingulate and midcingulate cortices. HIGHLIGHTS: Different approaches have been used to define successful cognitive aging (SA). Regardless of definition, different SA groups have similar brain features. SA individuals have greater anterior cingulate thickness and hippocampal volume. Lower entorhinal tau deposition, but not amyloid beta is related to SA. A combination of cortical integrity and resistance to tau may be features of SA.


Subject(s)
Alzheimer Disease , Cognitive Aging , Cognitive Dysfunction , Humans , Gyrus Cinguli/metabolism , tau Proteins/metabolism , Magnetic Resonance Imaging , Aging/pathology , Amyloid beta-Peptides/metabolism , Positron-Emission Tomography , Cognitive Dysfunction/pathology , Alzheimer Disease/pathology
8.
Ann Neurol ; 95(2): 249-259, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37789559

ABSTRACT

OBJECTIVE: Tau pathology is recognized as a primary contributor to neurodegeneration and clinical symptoms in Alzheimer's disease (AD). This study aims to localize the early tau pathology in cognitively normal older people that is predictive of subsequent neurodegeneration and memory decline, and delineate factors underlying tau-related memory decline in individuals with and without ß-amyloid (Aß). METHODS: A total of 138 cognitively normal older individuals from the Berkeley Aging Cohort Study underwent 11 C-Pittsburgh Compound-B (PiB) positron emission tomography (PET) to determine Aß positivity and 18 F-Flortaucipir (FTP) PET to measure tau deposition, with prospective cognitive assessments and structural magnetic resonance imaging. Voxel-wise FTP analyses examined associations between baseline tau deposition and longitudinal memory decline, longitudinal hippocampal atrophy, and longitudinal cortical thinning in AD signature regions. We also examined whether hippocampal atrophy and cortical thinning mediate tau effects on future memory decline. RESULTS: We found Aß-dependent tau associations with memory decline in the entorhinal and temporoparietal regions, Aß-independent tau associations with hippocampal atrophy within the medial temporal lobe (MTL), and that widespread tau was associated with mean cortical thinning in AD signature regions. Tau-related memory decline was mediated by hippocampal atrophy in Aß- individuals and by mean cortical thinning in Aß+ individuals. INTERPRETATION: Our results suggest that tau may affect memory through different mechanisms in normal aging and AD. Early tau deposition independent of Aß predicts subsequent hippocampal atrophy that may lead to memory deficits in normal older individuals, whereas elevated cortical tau deposition is associated with cortical thinning that may lead to more severe memory decline in AD. ANN NEUROL 2024;95:249-259.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Cohort Studies , tau Proteins/metabolism , Cerebral Cortical Thinning , Prospective Studies , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Positron-Emission Tomography , Memory Disorders/diagnostic imaging , Memory Disorders/etiology , Atrophy , Cognitive Dysfunction/metabolism , Magnetic Resonance Imaging
9.
Neuron ; 112(4): 676-686.e4, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38096815

ABSTRACT

In early Alzheimer's disease (AD) ß-amyloid (Aß) deposits throughout association cortex and tau appears in the entorhinal cortex (EC). Why these initially appear in disparate locations is not understood. Using task-based fMRI and multimodal PET imaging, we assess the impact of local AD pathology on network-to-network interactions. We show that AD pathologies flip interactions between the default mode network (DMN) and the medial temporal lobe (MTL) from inhibitory to excitatory. The DMN is hyperexcited with increasing levels of Aß, which drives hyperexcitability within the MTL and this directed hyperexcitation of the MTL by the DMN predicts the rate of tau accumulation within the EC. Our results support a model whereby Aß induces disruptions to local excitatory-inhibitory balance in the DMN, driving hyperexcitability in the MTL, leading to tau accumulation. We propose that Aß-induced disruptions to excitatory-inhibitory balance is a candidate causal route between Aß and remote EC-tau accumulation.


Subject(s)
Alzheimer Disease , tau Proteins , Humans , tau Proteins/metabolism , Default Mode Network , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Entorhinal Cortex/metabolism , Magnetic Resonance Imaging , Positron-Emission Tomography
10.
Alzheimers Res Ther ; 15(1): 157, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37740209

ABSTRACT

BACKGROUND: Plasma phosphorylated tau (p-tau) has emerged as a promising biomarker for Alzheimer's disease (AD). Studies have reported strong associations between p-tau and tau-PET that are mainly driven by differences between amyloid-positive and amyloid-negative patients. However, the relationship between p-tau and tau-PET is less characterized within cognitively impaired patients with a biomarker-supported diagnosis of AD. We conducted a head-to-head comparison between plasma p-tau217 and tau-PET in patients at the clinical stage of AD and further assessed their relationships with demographic, clinical, and biomarker variables. METHODS: We retrospectively included 87 amyloid-positive patients diagnosed with MCI or dementia due to AD who underwent structural MRI, amyloid-PET (11C-PIB), tau-PET (18F-flortaucipir, FTP), and blood draw assessments within 1 year (age = 66 ± 10, 48% female). Amyloid-PET was quantified in Centiloids (CL) while cortical tau-PET binding was measured using standardized uptake value ratios (SUVRs) referenced against inferior cerebellar cortex. Plasma p-tau217 concentrations were measured using an electrochemiluminescence-based assay on the Meso Scale Discovery platform. MRI-derived cortical volume was quantified with FreeSurfer. Mini-Mental State Examination (MMSE) scores were available at baseline (n = 85) and follow-up visits (n = 28; 1.5 ± 0.7 years). RESULTS: Plasma p-tau217 and cortical FTP-SUVR were correlated (r = 0.61, p < .001), especially in temporo-parietal and dorsolateral frontal cortices. Both higher p-tau217 and FTP-SUVR values were associated with younger age, female sex, and lower cortical volume, but not with APOE-ε4 carriership. PIB-PET Centiloids were weakly correlated with FTP-SUVR (r = 0.26, p = 0.02), but not with p-tau217 (r = 0.10, p = 0.36). Regional PET-plasma associations varied with amyloid burden, with p-tau217 being more strongly associated with tau-PET in temporal cortex among patients with moderate amyloid-PET burden, and with tau-PET in primary cortices among patients with high amyloid-PET burden. Higher p-tau217 and FTP-SUVR values were independently associated with lower MMSE scores cross-sectionally, while only baseline FTP-SUVR predicted longitudinal MMSE decline when both biomarkers were included in the same model. CONCLUSION: Plasma p-tau217 and tau-PET are strongly correlated in amyloid-PET-positive patients with MCI or dementia due to AD, and they exhibited comparable patterns of associations with demographic variables and with markers of downstream neurodegeneration.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Female , Middle Aged , Aged , Male , Retrospective Studies , Amyloidogenic Proteins , Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging
11.
bioRxiv ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37745434

ABSTRACT

Amyloid-ß (Aß) and tau deposition constitute Alzheimer's disease (AD) neuropathology. Cortical tau deposits first in the entorhinal cortex and hippocampus and then propagates to neocortex in an Aß-dependent manner. Tau also tends to accumulate earlier in higher-order association cortex than in lower-order primary sensory-motor cortex. While previous research has examined the production and spread of tau, little attention has been paid to its clearance. Low-frequency (<0.1 Hz) global brain activity during the resting state is coupled with cerebrospinal fluid (CSF) flow and potentially reflects glymphatic clearance. Here we report that tau deposition in subjects with evaluated Aß, accompanied by cortical thinning and cognitive decline, is strongly associated with decreased coupling between CSF flow and global brain activity. Substantial modulation of global brain activity is also manifested as propagating waves of brain activation between higher- and lower-order regions, resembling tau spreading. Together, the findings suggest an important role of resting-state global brain activity in AD tau pathology.

12.
bioRxiv ; 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37425904

ABSTRACT

Recent work suggests that indentations of the cerebral cortex, or sulci, may be uniquely vulnerable to atrophy in aging and Alzheimer's disease (AD) and that posteromedial cortex (PMC) is particularly vulnerable to atrophy and pathology accumulation. However, these studies did not consider small, shallow, and variable tertiary sulci that are located in association cortices and are often associated with human-specific aspects of cognition. Here, we first manually defined 4,362 PMC sulci in 432 hemispheres in 216 participants. Tertiary sulci showed more age- and AD-related thinning than non-tertiary sulci, with the strongest effects for two newly uncovered tertiary sulci. A model-based approach relating sulcal morphology to cognition identified that a subset of these sulci were most associated with memory and executive function scores in older adults. These findings support the retrogenesis hypothesis linking brain development and aging, and provide new neuroanatomical targets for future studies of aging and AD.

13.
Lancet Neurol ; 22(9): 847-857, 2023 09.
Article in English | MEDLINE | ID: mdl-37454670

ABSTRACT

For decades, the hypothesis that brain deposition of the amyloid ß protein initiates Alzheimer's disease has dominated research and clinical trials. Targeting amyloid ß is starting to produce therapeutic benefit, although whether amyloid-lowering drugs will be widely and meaningfully effective is still unclear. Despite extensive in-vivo biomarker evidence in humans showing the importance of an amyloid cascade that drives cognitive decline, the amyloid hypothesis does not fully account for the complexity of late-life cognitive impairment. Multiple brain pathological changes, inflammation, and host factors of resilience might also be involved in contributing to the development of dementia. This variability suggests that the benefits of lowering amyloid ß might depend on how strongly an amyloid pathway is manifest in an individual in relation to other coexisting pathophysiological processes. A new approach to research and treatment, which fully considers the multiple factors that drive cognitive decline, is necessary.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , Amyloid , Amyloid beta-Peptides/metabolism , Brain/pathology , Cognition , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism
14.
Mol Psychiatry ; 28(10): 4390-4398, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37460847

ABSTRACT

The dorsal raphe nucleus (DRN) is one of the earliest targets of Alzheimer's disease-related tau pathology and is a major source of brain serotonin. We used [18F]Fluoro-m-tyrosine ([18F]FMT) PET imaging to measure serotonin synthesis capacity in the DRN in 111 healthy adults (18-85 years-old). Similar to reports in catecholamine systems, we found elevated serotonin synthesis capacity in older adults relative to young. To establish the structural and functional context within which serotonin synthesis capacity is elevated in aging, we examined relationships among DRN [18F]FMT net tracer influx (Ki) and longitudinal changes in cortical thickness using magnetic resonance imaging, longitudinal changes in self-reported depression symptoms, and AD-related tau and ß-amyloid (Aß) pathology using cross-sectional [18F]Flortaucipir and [11C]Pittsburgh compound-B PET respectively. Together, our findings point to elevated DRN [18F]FMT Ki as a marker of poorer aging trajectories. Older adults with highest serotonin synthesis capacity showed greatest temporal lobe cortical atrophy. Cortical atrophy was associated with increasing depression symptoms over time, and these effects appeared to be strongest in individuals with highest serotonin synthesis capacity. We did not find direct relationships between serotonin synthesis capacity and AD-related pathology. Exploratory analyses revealed nuanced effects of sex within the older adult group. Older adult females showed the highest DRN synthesis capacity and exhibited the strongest relationships between entorhinal cortex tau pathology and increasing depression symptoms. Together these findings reveal PET measurement of the serotonin system to be a promising marker of aging trajectories relevant to both AD and affective changes in older age.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Female , Humans , Aged , Adolescent , Young Adult , Adult , Middle Aged , Aged, 80 and over , Serotonin , tau Proteins , Cross-Sectional Studies , Alzheimer Disease/psychology , Aging , Amyloid beta-Peptides , Atrophy , Positron-Emission Tomography , Magnetic Resonance Imaging
15.
Cereb Cortex ; 33(13): 8485-8495, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37160338

ABSTRACT

In rodents and nonhuman primates, sex hormones are powerful modulators of dopamine (DA) neurotransmission. Yet less is known about hormonal regulation of the DA system in the human brain. Using positron emission tomography (PET), we address this gap by comparing hormonal contraceptive users and nonusers across multiple aspects of DA function: DA synthesis capacity via the PET radioligand 6-[18F]fluoro-m-tyrosine ([18F]FMT), baseline D2/3 receptor binding potential using [11C]raclopride, and DA release using methylphenidate-paired [11C]raclopride. Participants consisted of 36 healthy women (n = 15 hormonal contraceptive users; n = 21 naturally cycling/non users of hormonal contraception), and men (n = 20) as a comparison group. A behavioral index of cognitive flexibility was assessed prior to PET imaging. Hormonal contraceptive users exhibited greater DA synthesis capacity than NC participants, particularly in dorsal caudate, and greater cognitive flexibility. Furthermore, across individuals, the magnitude of striatal DA synthesis capacity was associated with cognitive flexibility. No group differences were observed in D2/3 receptor binding or DA release. Analyses by sex alone may obscure underlying differences in DA synthesis tied to women's hormone status. Hormonal contraception (in the form of pill, shot, implant, ring, or intrauterine device) is used by ~400 million women worldwide, yet few studies have examined whether chronic hormonal manipulations impact basic properties of the DA system. Findings from this study begin to address this critical gap in women's health.


Subject(s)
Contraceptive Agents , Dopamine , Male , Animals , Humans , Female , Raclopride , Dopamine/metabolism , Positron-Emission Tomography/methods , Receptors, Dopamine D2/metabolism , Cognition
16.
BMC Med ; 21(1): 156, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37138290

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) pathology impairs cognitive function. Yet some individuals with high amounts of AD pathology suffer marked memory impairment, while others with the same degree of pathology burden show little impairment. Why is this? One proposed explanation is cognitive reserve i.e., factors that confer resilience against, or compensation for the effects of AD pathology. Deep NREM slow wave sleep (SWS) is recognized to enhance functions of learning and memory in healthy older adults. However, that the quality of NREM SWS (NREM slow wave activity, SWA) represents a novel cognitive reserve factor in older adults with AD pathology, thereby providing compensation against memory dysfunction otherwise caused by high AD pathology burden, remains unknown. METHODS: Here, we tested this hypothesis in cognitively normal older adults (N = 62) by combining 11C-PiB (Pittsburgh compound B) positron emission tomography (PET) scanning for the quantification of ß-amyloid (Aß) with sleep electroencephalography (EEG) recordings to quantify NREM SWA and a hippocampal-dependent face-name learning task. RESULTS: We demonstrated that NREM SWA significantly moderates the effect of Aß status on memory function. Specifically, NREM SWA selectively supported superior memory function in individuals suffering high Aß burden, i.e., those most in need of cognitive reserve (B = 2.694, p = 0.019). In contrast, those without significant Aß pathological burden, and thus without the same  need for cognitive reserve, did not similarly benefit from the presence of NREM SWA (B = -0.115, p = 0.876). This interaction between NREM SWA and Aß status predicting memory function was significant after correcting for age, sex, Body Mass Index, gray matter atrophy, and previously identified cognitive reserve factors, such as education and physical activity (p = 0.042). CONCLUSIONS: These findings indicate that NREM SWA is a novel cognitive reserve factor providing resilience against the memory impairment otherwise caused by high AD pathology burden. Furthermore, this cognitive reserve function of NREM SWA remained significant when accounting both for covariates, and factors previously linked to resilience, suggesting that sleep might be an independent cognitive reserve resource. Beyond such mechanistic insights are potential therapeutic implications. Unlike many other cognitive reserve factors (e.g., years of education, prior job complexity), sleep is a modifiable factor. As such, it represents an intervention possibility that may aid the preservation of cognitive function in the face of AD pathology, both present moment and longitudinally.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Cognitive Reserve , Sleep, Slow-Wave , Humans , Aged , Alzheimer Disease/pathology , Magnetic Resonance Imaging , Amyloid beta-Peptides , Sleep , Positron-Emission Tomography
17.
Nat Aging ; 3(2): 229-237, 2023 02.
Article in English | MEDLINE | ID: mdl-37118122

ABSTRACT

Accurately measuring resilience to preclinical Alzheimer's disease (AD) pathology is essential to understanding an important source of variability in cognitive aging. In a cohort of cognitively normal older adults (n = 123, age 76.75 ± 6.15 yr), we built a multifactorial measure of resilience which moderated the effect of AD pathology on longitudinal cognitive change. Linear residuals-based measures of resilience, along with other proxy measures (education and vocabulary), were entered into a hierarchical partial least-squares path model defining a putative consolidated resilience latent factor (model goodness of fit = 0.77). In a set of validation analyses using linear mixed models predicting longitudinal cognitive change, there was a significant three-way interaction among consolidated resilience, tau and time on episodic memory change (P = 0.001) such that higher resilience blunted the effect of tau pathology on episodic memory decline. Interactions between consolidated resilience and amyloid pathology on non-memory cognition decline suggested that resilience moderates pathology-specific effects on different cognitive domains.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Aged , Aged, 80 and over , Humans , Aging/pathology , Alzheimer Disease/pathology , Biomarkers , Individuality , tau Proteins/metabolism
18.
medRxiv ; 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36993271

ABSTRACT

Determining the genetic architecture of Alzheimer's disease (AD) pathologies can enhance mechanistic understanding and inform precision medicine strategies. Here, we performed a genome-wide association study of cortical tau quantified by positron emission tomography in 3,136 participants from 12 independent studies. The CYP1B1-RMDN2 locus was associated with tau deposition. The most significant signal was at rs2113389, which explained 4.3% of the variation in cortical tau, while APOE4 rs429358 accounted for 3.6%. rs2113389 was associated with higher tau and faster cognitive decline. Additive effects, but no interactions, were observed between rs2113389 and diagnosis, APOE4 , and Aß positivity. CYP1B1 expression was upregulated in AD. rs2113389 was associated with higher CYP1B1 expression and methylation levels. Mouse model studies provided additional functional evidence for a relationship between CYP1B1 and tau deposition but not Aß. These results may provide insight into the genetic basis of cerebral tau and novel pathways for therapeutic development in AD.

19.
Alzheimers Dement ; 19(2): 444-455, 2023 02.
Article in English | MEDLINE | ID: mdl-35429219

ABSTRACT

INTRODUCTION: Relying on magnetic resonance imaging (MRI) for quantification of positron emission tomography (PET) images may limit generalizability of the results. We evaluated several MRI-free approaches for amyloid beta (Aß) and tau PET quantification relative to MRI-dependent quantification cross-sectionally and longitudinally. METHODS: We compared baseline MRI-free and MRI-dependent measurements of Aß PET ([18F]florbetapir [FBP], N = 1290, [18F]florbetaben [FBB], N = 290) and tau PET ([18F]flortaucipir [FTP], N = 768) images with respect to continuous and dichotomous agreement, effect sizes of Aß+ impaired versus Aß- unimpaired groups, and longitudinal standardized uptake value ratio (SUVR) slopes in a subset of individuals. RESULTS: The best-performing MRI-free approaches had high continuous and dichotomous agreement with MRI-dependent SUVRs for Aß PET and temporal flortaucipir (R2 ≥0.95; ± agreement ≥92%) and for Alzheimer's disease-related effect sizes; agreement was slightly lower for entorhinal flortaucipir and longitudinal slopes. DISCUSSION: There is no consistent loss of baseline or longitudinal AD-related signal with MRI-free Aß and tau PET image quantification.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Amyloid beta-Peptides , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Positron-Emission Tomography/methods , Magnetic Resonance Imaging , tau Proteins , Cognitive Dysfunction/pathology
20.
Neuroimage ; 265: 119761, 2023 01.
Article in English | MEDLINE | ID: mdl-36455762

ABSTRACT

Accurate measurement of Alzheimer's disease (AD) pathology in older adults without significant clinical impairment is critical to assessing intervention strategies aimed at slowing AD-related cognitive decline. The U.S. Study to Protect Brain Health Through Lifestyle Intervention to Reduce Risk (POINTER) is a 2-year randomized controlled trial to evaluate the effect of multicomponent risk reduction strategies in older adults (60-79 years) who are cognitively unimpaired but at increased risk for cognitive decline/dementia due to factors such as cardiovascular disease and family history. The POINTER Imaging ancillary study is collecting tau-PET ([18F]MK6240), beta-amyloid (Aß)-PET ([18F]florbetaben [FBB]) and MRI data to evaluate neuroimaging biomarkers of AD and cerebrovascular pathophysiology in this at-risk sample. Here 481 participants (70.0±5.0; 66% F) with baseline MK6240, FBB and structural MRI scans were included. PET scans were coregistered to the structural MRI which was used to create FreeSurfer-defined reference regions and target regions of interest (ROIs). We also created off-target signal (OTS) ROIs to examine the magnitude and distribution of MK6240 OTS across the brain as well as relationships between OTS and age, sex, and race. OTS was unimodally distributed, highly correlated across OTS ROIs and related to younger age and sex but not race. Aiming to identify an optimal processing approach for MK6240 that would reduce the influence of OTS, we compared our previously validated MRI-guided standard PET processing and 6 alternative approaches. The alternate approaches included combinations of reference region erosion and meningeal OTS masking before spatial smoothing as well as partial volume correction. To compare processing approaches we examined relationships between target ROIs (entorhinal cortex (ERC), hippocampus or a temporal meta-ROI (MetaROI)) SUVR and age, sex, race, Aß and a general cognitive status measure, the Modified Telephone Interview for Cognitive Status (TICSm). Overall, the processing approaches performed similarly, and none showed a meaningful improvement over standard processing. Across processing approaches we observed previously reported relationships with MK6240 target ROIs including positive associations with age, an Aß+> Aß- effect and negative associations with cognition. In sum, we demonstrated that different methods for minimizing effects of OTS, which is highly correlated across the brain within subject, produced no substantive change in our performance metrics. This is likely because OTS contaminates both reference and target regions and this contamination largely cancels out in SUVR data. Caution should be used when efforts to reduce OTS focus on target or reference regions in isolation as this may exacerbate OTS contamination in SUVR data.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Positron-Emission Tomography/methods , tau Proteins/metabolism , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...