Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 58(14): 8953-8968, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31247826

ABSTRACT

The complex [Fe(HL*)2](OTf)2, 1, where HL* = bis(3,5-dimethylpyrazol-1-yl)(3-1H-pyrazole)methane, was prepared in order to compare its magnetic properties with those of the analogous parent complex, [Fe(HL)2](OTf)2, that lacks methyl groups on pyrazolyl rings and that undergoes spin crossover (SCO) from the low spin (LS) to the high spin (HS) form above room temperature. It was anticipated that this new semibulky derivative should favor the HS state and undergo SCO at a lower temperature range. During this study, six crystalline forms of 1 were prepared by controlling the crystallization conditions. Thus, when reagents are combined in CH3CN, an equilibrium mixture of cis and trans isomers is established that favors the latter below 311 K. The trans isomer can be isolated exclusively as a mixture of solvates, LS trans-1·2CH3CN and HS trans-1·4CH3CN, by cooling CH3CN solutions to -20 °C with the former being favored at high concentrations and short crystallization times. Subsequently, vapor diffusion of Et2O into CH3CN solutions of pure trans-1·2CH3CN gives solvate-free HS trans-1. Subjecting trans-1·2CH3CN to vacuum at room temperature gives microcrystalline trans-1·CH3CN, identified by elemental analysis and its distinct powder X-ray diffraction pattern. If an isomeric mixture of 1 is subject to room-temperature vapor diffusion, then a crystalline mixture of HS isomers cis-1 and trans-1 is obtained. Finally, slowly cooling hot acetonitrile solutions of isomeric mixtures of 1 to room temperature gives large prisms of HS co-1, a species with both cis and trans isomers in the unit cell. The complexes trans-1, trans-1·CH3CN, cis-1, and co-1 undergo SCO below 250 K while trans-1·xCH3CN (x = 2, 4) solvates do not undergo SCO before desolvation.

2.
Inorg Chem ; 57(3): 1572-1589, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29359926

ABSTRACT

Two new C-scorpionate ligands with a bis(3,5-dimethylpyrazol-1-yl)methyl group bound to the 3 position of either an N-tosyl (TsL*) or an N-H pyrazole (HL*) ring have been prepared. The silver(I) complexes of these new ligands and the two previously reported analogous ligands with unsubstituted bis(pyrazol-1-yl)methyl groups (TsL and HL) in both 1:1 and 2:1 ligand/metal ratios were investigated to explore the effects of ligand sterics on their physical and chemical properties. The structurally characterized derivatives of the type [Ag(L)2](OTf) are four-coordinate, where the confused pyrazolyl is not bound to the metal. On the other hand, three 1:1 complexes [Ag(L)](OTf) had all pyrazolyls bound, while the µ-κ1,κ1-TsL derivative had an unbound confused pyrazolyl. The molecularity of the latter four ranged from polymeric to dimeric to monomeric in the solid with increasing steric bulk of the ligand. The utility of these complexes in stoichiometric ligand-transfer reactions and in styrene aziridination was demonstrated. Thus, tricarbonylmanganese(I) complexes were prepared as kinetically inert models for comparative solution diffusion NMR studies. Also, [Fe(HL)2](OTf)2 was prepared for similar reasons and to compare the effects of anion on spin-crossover properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...