Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(3)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36984915

ABSTRACT

Additive manufacturing (AM), an enabler of Industry 4.0, recently opened limitless possibilities in various sectors covering personal, industrial, medical, aviation and even extra-terrestrial applications. Although significant research thrust is prevalent on this topic, a detailed review covering the impact, status, and prospects of artificial intelligence (AI) in the manufacturing sector has been ignored in the literature. Therefore, this review provides comprehensive information on smart mechanisms and systems emphasizing additive, subtractive and/or hybrid manufacturing processes in a collaborative, predictive, decisive, and intelligent environment. Relevant electronic databases were searched, and 248 articles were selected for qualitative synthesis. Our review suggests that significant improvements are required in connectivity, data sensing, and collection to enhance both subtractive and additive technologies, though the pervasive use of AI by machines and software helps to automate processes. An intelligent system is highly recommended in both conventional and non-conventional subtractive manufacturing (SM) methods to monitor and inspect the workpiece conditions for defect detection and to control the machining strategies in response to instantaneous output. Similarly, AM product quality can be improved through the online monitoring of melt pool and defect formation using suitable sensing devices followed by process control using machine learning (ML) algorithms. Challenges in implementing intelligent additive and subtractive manufacturing systems are also discussed in the article. The challenges comprise difficulty in self-optimizing CNC systems considering real-time material property and tool condition, defect detections by in-situ AM process monitoring, issues of overfitting and underfitting data in ML models and expensive and complicated set-ups in hybrid manufacturing processes.

2.
Micromachines (Basel) ; 14(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36677180

ABSTRACT

Electro-discharge machining (EDM) removes electrically conductive materials by high frequency spark discharges between the tool electrode and the workpiece in the presence of a dielectric liquid. Being an electrothermal process and with melting and evaporation being the mechanisms of material removal, EDM suffers from migration of materials between the tool and the workpiece. Although unwanted surface modification was considered a challenge in the past for many applications, this inherent nature of the EDM process has recently become of interest to the scientific community. As a result, researchers have been focusing on using the EDM process for surface modification and coating by targeted surface engineering. In order to engineer a surface or generate functional coatings using the electro-discharge process, proper knowledge of the EDM process and science of electro-discharge surface modification must be understood. This paper aims to provide an overview of the electro-discharge surface modification and coating processes, thus assisting the readers on exploring potential applications of EDM-based techniques of surface engineering and coating generation. This review starts with a brief introduction to the EDM process, the physics behind the EDM process, and the science of the surface modification process in EDM. The paper then discusses the reasons and purposes of surface modification and coating practices. The common EDM-based techniques reported in the literature for producing coatings on the surface are discussed with their process mechanisms, important parameters, and design considerations. The characterization techniques used for the analysis of modified surfaces and coating layers, as well as the tribological and surface properties of modified surfaces or coatings are discussed. Some of the important applications of EDM-based surface modification and coating processes are generating surfaces for protective coating, for aesthetic purposes, for enhancing the biocompatibility of implants, for improving corrosion resistance, for improving wear resistance, and for improving tribological performance. The current state of the research in these application areas is discussed with examples. Finally, suggestions are provided on future research directions and innovative potential new applications of the electro-discharge-based surface engineering and coating processes.

3.
Micromachines (Basel) ; 12(1)2021 Jan 09.
Article in English | MEDLINE | ID: mdl-33435291

ABSTRACT

Non-conductive structural ceramics are receiving ever-increasing attention due to their outstanding physical and mechanical properties and their critical applications in aerospace and biomedical industries. However, conventional mechanical machining seems infeasible for the machining of these superior ceramics due to their extreme brittleness and higher hardness. Electro discharge machining (EDM), well known for its machining of electrically conductive materials irrespective of materials hardness, has emerged as a potential machining technique due to its noncontact nature when complemented with an assistive electrode technique. This paper investigates the material removal mechanism and effects of machining parameters on machining speed and dimensional and profile accuracies of features machined on zirconia toughened alumina (ZTA) ceramics using assistive electrode EDM. Our experimental results demonstrate that both increasing peak current and pulse on time improves the MRR, however, it also aids in generating thicker layer on machined surface. In addition, pulse interval time is crucial for the machining of nonconductive ceramics, as larger value might cause the complete removal of intrinsic carbon layer which may lead to non/sparking condition. Higher peak current increases circularity whereas short pulse on and pulse off time aid in increasing circularity due to rough machining. In addition, taperness is found to be regulated by the peak current and pulse on time. Overall, thermal cracking and spalling appear to be a dominating material removal mechanism other than melting and evaporation for the EDM of ZTA.

4.
Materials (Basel) ; 13(18)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32942677

ABSTRACT

Machined surface quality and integrity affect the corrosion performance of AZ31 magnesium composites. These novel materials are preferred for temporary orthopedic and vascular implants. In this paper, the drilling performance of AZ31-magnesium reinforced with hollow alumina microsphere syntactic foam under LN2 cryogenic, dry, and Almag® Oil is presented. Cutting tests were conducted using TiAlN physical vapor deposition (PVD) coated multilayer carbide and K10 uncoated carbide twist drills. AZ31 magnesium matrices were reinforced with hollow alumina ceramic microspheres with varying volume fractions (5%, 10%, 15%) and average bubble sizes. Experimental results showed that the drilling thrust forces increased by 250% with increasing feed rate (0.05 to 0.6 mm/tooth) and 46% with the increasing volume fraction of alumina microspheres (5% to 15%). Cryogenic machining generated 45% higher thrust forces compared to dry and wet machining. The higher the volume fraction and the finer the average size of hollow microspheres, the higher were the thrust forces. Cryogenic machining (0.42 µm) produced a 75% improvement in surface roughness (Ra) values compared to wet machining (1.84 µm) with minimal subsurface machining-induced defects. Surface quality deteriorated by 129% with an increasing volume fraction of alumina microspheres (0.61 µm to 1.4 µm). Burr height reduction of 53% was achieved with cryogenic machining (60 µm) compared to dry machining (130 µm). Overall, compared to dry and wet machining methods, cryogenic drilling can be employed for the machining of AZ31 magnesium syntactic foams to achieve good surface quality and integrity.

5.
Micromachines (Basel) ; 10(1)2018 Dec 25.
Article in English | MEDLINE | ID: mdl-30585198

ABSTRACT

Conventional machining techniques of ceramics such as milling, drilling, and turning experience high cutting forces as well as extensive tool wear. Nevertheless, non-contact processes such as laser machining and electro-discharge machining (EDM) remain suitable options for machining ceramics materials, which are considered as extremely brittle and hard-to-machine. Considering the importance of ceramic machining, this paper attempts to provide an insight into the state of the art of the EDM process, types of ceramics materials and their applications, as well as the machining techniques involved. This study also presents a concise literature review of experimental and theoretical research studies conducted on the EDM of ceramics. Finally, a section summarizing the major challenges, proposed solutions, and suggestions for future research directions has been included at the end of the paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...