Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36984248

ABSTRACT

A single crystalline layered semiconductor In1.2Ga0.8S3 phase was grown, and by intercalating p-aminopyridine (NH2-C5H4N or p-AP) molecules into this crystal, a new intercalation compound, In1.2Ga0.8S3·0.5(NH2-C5H4N), was synthesized. Further, by substituting p-AP molecules with p-ethylenediamine (NH2-CH2-CH2-NH2 or p-EDA) in this intercalation compound, another new intercalated compound-In1.2Ga0.8S3·0.5(NH2-CH2-CH2-NH2) was synthesized. It was found that the single crystallinity of the initial In1.2Ga0.8S3 samples was retained after their intercalation despite a strong deterioration in quality. The thermal peculiarities of both the intercalation and deintercalation of the title crystal were determined. Furthermore, the unit cell parameters of the intercalation compounds were determined from X-ray diffraction data (XRD). It was found that increasing the c parameter corresponded to the dimension of the intercalated molecule. In addition to the intercalation phases' experimental characterization, the lattice dynamical properties and the electronic and bonding features of the stoichiometric GaInS3 were calculated using the Density Functional Theory within the Generalized Gradient Approximations (DFT-GGA). Nine Raman-active modes were observed and identified for this compound. The electronic gap was found to be an indirect one and the topological analysis of the electron density revealed that the interlayer bonding is rather weak, thus enabling the intercalation of organic molecules.

2.
Nanomaterials (Basel) ; 14(1)2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38202552

ABSTRACT

MoS2 is a two-dimensional layered transition metal dichalcogenide with unique electronic and optical properties. The fabrication of ultrathin MoS2 is vitally important, since interlayer interactions in its ultrathin varieties will become thickness-dependent, providing thickness-governed tunability and diverse applications of those properties. Unlike with a number of studies that have reported detailed information on direct bandgap emission from MoS2 monolayers, reliable experimental evidence for thickness-induced evolution or transformation of the indirect bandgap remains scarce. Here, the sulfurization of MoO3 thin films with nominal thicknesses of 30 nm, 5 nm and 3 nm was performed. All sulfurized samples were examined at room temperature with spectroscopic ellipsometry and photoluminescence spectroscopy to obtain information about their dielectric function and edge emission spectra. This investigation unveiled an indirect-to-indirect crossover between the transitions, associated with two different Λ and K valleys of the MoS2 conduction band, by thinning its thickness down to a few layers.

SELECTION OF CITATIONS
SEARCH DETAIL
...