Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Bone Jt Surg ; 12(2): 92-101, 2024.
Article in English | MEDLINE | ID: mdl-38420521

ABSTRACT

Osteoarthritis (OA) can arise from various factor including trauma, overuse, as well as degeneration resulting from age or disease. The specific treatment options will vary based on the severity of the condition, and the affected joints. Some common treatments for OA include lifestyle modifications, medications, physical therapy, surgery and tissue engineering (TE). For cartilage tissue engineering (CTE), three-dimension (3D) scaffolds are made of biocompatible natural polymers, which allow for the regeneration of new cartilage tissue. An ideal scaffold should possess biological and mechanical properties that closely resemble those of the cartilage tissue, and lead to improved functional of knee. These scaffolds are specifically engineered to serve as replacements for damaged and provide support to the knee joint. 3D-bioprinted scaffolds are made of biocompatible materials natural polymers, which allow for the regeneration of new cartilage. The utilization of 3D bioprinting method has emerged as a novel approach for fabricating scaffolds with optimal properties for CTE applications. This method enables the creation of scaffolds that closely mimic the native cartilage in terms of mechanical characteristics and biological functionality. Alginate, that has the capability to fabricate a cartilage replacement customized for each individual patient. This polymer exhibits hydrophilicity, biocompatibility, and biodegradability, along with shear-thinning properties. These unique properties enable Alginate to be utilized as a bio-ink for 3D bioprinting method. Furthermore, chondrogenesis is the complex process through which cartilage is formed via a series of cellular and molecular signaling. Signaling pathway is as a fundamental mechanism in cartilage formation, enhanced by the incorporation of biomolecules and growth factors that induce the differentiation of stem cells. Accordingly, ongoing review is focusing to promote of 3D bioprinting scaffolds through the utilization of advanced biomolecules-loading of Alginate-based that has the capability to fabricate a cartilage replacement tailored specifically to each patient's unique needs and anatomical requirements.

2.
Arch Bone Jt Surg ; 11(8): 485-492, 2023.
Article in English | MEDLINE | ID: mdl-37674694

ABSTRACT

In clinical practice, bone defects that occur alongside tumors, infections, or other bone diseases present significant challenges in the orthopedic field. Although autologous and allogeneic grafts are introduced as common traditional remedies in this field, their applications have a series of limitations. Various approaches have been attempted to treat large and irregularly shaped bone defects; however, their success has been less than optimal due to a range of issues related to material and design. However, in recent years, additive manufacturing has emerged as a promising solution to the challenge of creating implants that can be perfectly tailored to fit individual defects during surgical procedures. By fabrication of constructs with specific designs using this technique, surgeons are able to achieve much better outcomes for patients. Polymers, ceramics, and metals have been used as biomaterials in Orthopedic Surgery fields. Polymeric scaffolds have been used successfully in total joint replacements, soft tissue reconstruction, joint fusion, and as fracture fixation devices. The use of polymeric biomaterials, either in the form of pre-made solid scaffolds or injectable pastes that can harden in situ, shows great promise as a substitute for commonly used autografts and allografts. Polymethyl methacrylate (PMMA) is one of the most widely used polymer cement in orthopedic surgery. The present paper begins with an introduction and will then provide an overview of the properties, advantages/disadvantages, applications, and modifications of PMMA bone cement.

SELECTION OF CITATIONS
SEARCH DETAIL
...