Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 130(7): 3761-3776, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32510473

ABSTRACT

The maternal perinatal environment modulates brain formation, and altered maternal nutrition has been linked to the development of metabolic and psychiatric disorders in the offspring. Here, we showed that maternal high-fat diet (HFD) feeding during lactation in mice elicits long-lasting changes in gene expression in the offspring's dopaminergic circuitry. This translated into silencing of dopaminergic midbrain neurons, reduced connectivity to their downstream targets, and reduced stimulus-evoked dopamine (DA) release in the striatum. Despite the attenuated activity of DA midbrain neurons, offspring from mothers exposed to HFD feeding exhibited a sexually dimorphic expression of DA-related phenotypes, i.e., hyperlocomotion in males and increased intake of palatable food and sucrose in females. These phenotypes arose from concomitantly increased spontaneous activity of D1 medium spiny neurons (MSNs) and profoundly decreased D2 MSN projections. Overall, we have unraveled a fundamental restructuring of dopaminergic circuitries upon time-restricted altered maternal nutrition to induce persistent behavioral changes in the offspring.


Subject(s)
Diet, High-Fat/adverse effects , Dopamine/metabolism , Lactation , Maternal Exposure/adverse effects , Mesencephalon/metabolism , Animals , Female , Male , Mesencephalon/pathology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...