Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micron ; 43(5): 565-82, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22244153

ABSTRACT

Correlative microscopy is the application of two or more distinct microscopy techniques to the same region of a sample, generating complementary morphological, structural and chemical information that exceeds what is possible with any single technique. As a variety of complementary microscopy approaches rather than a specific type of instrument, correlative microscopy has blossomed in recent years as researchers have recognised that it is particularly suited to address the intricate questions of the modern biological sciences. Specialised technical developments in sample preparation, imaging methods, visualisation and data analysis have also accelerated the uptake of correlative approaches. In light of these advances, this critical review takes the reader on a journey through recent developments in, and applications of, correlative microscopy, examining its impact in biomedical research and in the field of plant science. This twin emphasis gives a unique perspective into use of correlative microscopy in fields that often advance independently, and highlights the lessons that can be learned from both fields for the future of this important area of research.


Subject(s)
Cytological Techniques , Microscopy/methods , Animals , Botany/methods , Humans , Plants
2.
J Microsc ; 235(3): 282-92, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19754723

ABSTRACT

Elucidating the structure and dynamics of lamellipodia and filopodia in response to different stimuli is a topic of continuing interest in cancer cells as these structures may be attractive targets for therapeutic purposes. Interestingly, a close functional relationship between these actin-rich protrusions and specialized membrane domains has been recently demonstrated. The aim of this study was therefore to investigate the fine organization of these actin-rich structures and examine how they structurally may relate to detergent-resistant membrane (DRM) domains in the MTLn3 EGF/serum starvation model. For this reason, we designed a straightforward and alternative method to study cytoskeleton arrays and their associated structures by means of correlative fluorescence (/laser)- and electron microscopy (CFEM). CFEM on whole mounted breast cancer cells revealed that a lamellipodium is composed of an intricate filamentous actin web organized in various patterns after different treatments. Both actin dots and DRM's were resolved, and were closely interconnected with the surrounding cytoskeleton. Long actin filaments were repeatedly observed extending beyond the leading edge and their density and length varied after different treatments. Furthermore, CFEM also allowed us to demonstrate the close structural association of DRMs with the cytoskeleton in general and the filamentous/dot-like structural complexes in particular, suggesting that they are all functionally linked and consequently may regulate the cell's fingertip dynamics. Finally, electron tomographic modelling on the same CFEM samples confirmed that these extensions are clearly embedded within the cytoskeletal matrix of the lamellipodium.


Subject(s)
Actin Cytoskeleton/chemistry , Actin Cytoskeleton/ultrastructure , Actins/analysis , Microscopy, Electron, Transmission/methods , Microscopy, Fluorescence/methods , Cell Line, Tumor , Female , Humans , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...