Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Cell Res ; 1867(7): 118711, 2020 07.
Article in English | MEDLINE | ID: mdl-32224192

ABSTRACT

Cardiotoxicity is a highly relevant, because often life-threatening, adverse effect of doxorubicin (Doxo)-based anticancer therapy. Here, we investigated the Doxo-response of cardiovascular stem/progenitor cells employing a mouse embryonic stem cell (mESC)-based in vitro differentiation model. Endothelial progenitor cells revealed a pronounced Doxo sensitivity as compared to mESC, differentiated endothelial-like (EC) and cardiomyocyte-like cells (CM) and CM progenitors, which rests on the activation of senescence. Doxo treatment of EC progenitors altered protein expression of individual endothelial markers, actin cytoskeleton morphology, mRNA expression of genes related to mitochondrial functions, autophagy, apoptosis, and DNA repair as well as mitochondrial DNA content, respiration and ATP production in the surviving differentiated EC progeny. By contrast, LDL uptake, ATP-stimulated Ca2+ release, and cytokine-stimulated ICAM-1 expression remained unaffected by the anthracycline treatment. Thus, exposure of EC progenitors to Doxo elicits isolated and persistent dysfunctions in the surviving EC progeny. In conclusion, we suggest that Doxo-induced injury of EC progenitors adds to anthracycline-induced cardiotoxicity, making this cell-type a preferential target for pharmacoprotective and regenerative strategies.


Subject(s)
Cardiotoxicity/genetics , Doxorubicin/adverse effects , Endothelial Progenitor Cells/drug effects , Intercellular Adhesion Molecule-1/genetics , Mouse Embryonic Stem Cells/drug effects , Animals , Apoptosis/drug effects , Autophagy/drug effects , Cardiotoxicity/pathology , Cardiotoxicity/prevention & control , Cell Differentiation/drug effects , DNA Repair/drug effects , Endothelial Progenitor Cells/metabolism , Gene Expression Regulation/drug effects , Mice , Mitochondria/drug effects , Mouse Embryonic Stem Cells/metabolism , Myocytes, Cardiac/drug effects , Neoplasms/complications , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...