Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Protoplasma ; 259(6): 1455-1466, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35195768

ABSTRACT

The drug development process is one of the important aspects of medical biology. The classical lead identification strategy in the way of drug development based on animal cell is time-consuming, expensive and involving ethical issues. The following study aims to develop a novel plant-based screening of drugs. Study shows the efficacy of certain anti-cancerous drugs (Pemetrexed, 5-Fluorouracil, Methotrexate, Topotecan and Etoposide) on a plant-based (Lathyrus sativus L.) system. Two important characteristics of cancer cells were observed in the colchicine-treated polyploid cell and the callus, where the chromosome numbers were unusual and the division of cells were uncontrolled respectively. With increasing concentration, the drugs significantly reduced the mitotic index, ploidy level and callus growth. Increasing Pemetrexed concentration decreased the plant DHFR activity. A decrease in total RNA content was observed in 5-FU and Methotrexate with increasing concentrations of the drugs. Etoposide and Topotecan inhibited plant topoisomerase II and topoisomerase I activities, which was justified through plasmid nicking and comet assay, respectively. Molecular and biochemical study revealed similar results to the animal system. The in silico study had been done, and the structural similarity of drug binding domains of L. sativus and human beings had also been established. The binding site of the selected drugs to the domains of plant target proteins was also determined. Experimental results are significant in terms of the efficacy of known anti-cancerous drugs on the plant-based system. The proposed assay system is a cost-effective, convenient and less time-consuming process for primary screening of anti-cancerous lead molecules.


Subject(s)
Lathyrus , Colchicine/metabolism , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type II/metabolism , Etoposide/pharmacology , Fluorouracil/metabolism , Humans , Lathyrus/chemistry , Lathyrus/genetics , Lathyrus/metabolism , Methotrexate/metabolism , Methotrexate/pharmacology , Pemetrexed/metabolism , Plant Proteins/metabolism , RNA/metabolism , Topotecan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...