Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(14): 16097-16105, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617618

ABSTRACT

Acoustophoretic forces have been successfully implemented into droplet-based microfluidic devices to manipulate droplets. These acoustophoretic forces in droplet microfluidic devices are typically generated as in acoustofluidic devices through transducer actuation of a piezoelectric substrate such as lithium niobate (LiNbO3), which is inherently accompanied by the emergence of electrical fields. Understanding acoustophoretic versus dielectrophoretic forces produced by electrodes and transducers within active microfluidic devices is important for the optimization of device performance during design iterations. In this case study, we design microfluidic devices with a droplet injection module and report an experimental strategy to deduce the respective contribution of the acoustophoretic versus dielectrophoretic forces for the observed droplet injection. Our PDMS-based devices comprise a standard oil-in-water droplet-generating module connected to a T-junction injection module featuring actuating electrodes. We use two different electrode geometries produced within the same PDMS slab as the droplet production/injection channels by filling low-melting-point metal alloy into channels that template the electrode geometries. When these electrodes are constructed on LiNbO3 as the substrate, they have a dual function as a piezoelectric transducer, which we call embedded liquid metal interdigitated transducers (elmIDTs). To decipher the contribution of acoustophoretic versus dielectrophoretic forces, we build the same devices on either piezoelectric LiNbO3 or nonpiezo active glass substrates with different combinations of physical device characteristics (i.e., elmIDT geometry and alignment) and operate in a range of phase spaces (i.e., frequency, voltage, and transducer polarity). We characterize devices using techniques such as laser Doppler vibrometry (LDV) and infrared imaging, along with evaluating droplet injection for our series of device designs, constructions, and operating parameters. Although we find that LiNbO3 device designs generate acoustic fields, we demonstrate that droplet injection occurs only due to dielectrophoretic forces. We deduce that droplet injection is caused by the coupled dielectrophoretic forces arising from the operation of elmIDTs rather than by acoustophoretic forces for this specific device design. We arrive at this conclusion because equivalent droplet injection occurs without the presence of an acoustic field using the same electrode designs on nonpiezo active glass substrate devices. This work establishes a methodology to pinpoint the major contributing force of droplet manipulation in droplet-based acoustomicrofluidics.

2.
ACS Omega ; 7(33): 28820-28830, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36033654

ABSTRACT

Carbon black is the most frequently applied conductive additive in rubber and polymer composites. In this work, we show how a carbon black microstructure in a polymer matrix can be conclusively modeled based on carbon black aggregation as well as an agglomeration mechanism using a state-of-the-art mathematical model. This novel and flexible microstructural modeling method enables us to virtually investigate the morphology of conductive additives within a polymer matrix and can be adapted to many conductive polymer combinations used for different applications. Furthermore, we calculate the electrical conductivity of the composite using a finite volume-based as well as a discrete element-based simulation technique and validate the results with experimental data. Utilizing a novel discrete element method (DEM) modeling technique, we were able to improve calculation times by a factor of 12.2 compared to finite volume method (FVM) simulations while maintaining high accuracy. Using this approach, we are able to predict the required carbon black content and minimize the amount of additive to create a polymer composite with a designated target conductivity.

3.
RSC Adv ; 12(17): 10467-10488, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35425017

ABSTRACT

Seeds are vulnerable to physical and biological stresses during the germination process. Seed priming strategies can alleviate such stresses. Seed priming is a technique of treating and drying seeds prior to germination in order to accelerate the metabolic process of germination. Multiple benefits are offered by seed priming techniques, such as reducing fertilizer use, accelerating seed germination, and inducing systemic resistance in plants, which are both cost-effective and eco-friendly. For seed priming, cold plasma (CP)-mediated priming could be an innovative alternative to synthetic chemical treatments. CP priming is an eco-friendly, safe and economical, yet relatively less explored technique towards the development of seed priming. In this review, we discussed in detail the application of CP technology for seed priming to enhance germination, the quality of seeds, and the production of crops in a sustainable manner. Additionally, the combination treatment of CP with nanoparticle (NP) priming is also discussed. The large numbers of parameters need to be monitored and optimized during CP treatment to achieve the desired priming results. Here, we discussed a new perspective of machine learning for modeling plasma treatment parameters in agriculture for the development of synergistic protocols for different types of seed priming.

4.
Nanomaterials (Basel) ; 10(10)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066520

ABSTRACT

Establishing energy storage systems beyond conventional lithium ion batteries requires the development of novel types of electrode materials. Such materials should be capable of accommodating ion species other than Li+, and ideally, these ion species should be of multivalent nature, such as Al3+. Along this line, we introduce a highly porous aerogel cathode composed of reduced graphene oxide, which is loaded with nanostructured SnO2. This binder-free hybrid not only exhibits an outstanding mechanical performance, but also unites the pseudocapacity of the reduced graphene oxide and the electrochemical storage capacity of the SnO2 nanoplatelets. Moreover, the combination of both materials gives rise to additional intercalation sites at their interface, further contributing to the total capacity of up to 16 mAh cm-3 at a charging rate of 2 C. The high porosity (99.9%) of the hybrid and the synergy of its components yield a cathode material for high-rate (up to 20 C) aluminum ion batteries, which exhibit an excellent cycling stability over 10,000 tested cycles. The electrode design proposed here has a great potential to meet future energy and power density demands for advanced energy storage devices.

5.
Philos Trans A Math Phys Eng Sci ; 377(2150): 20190130, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31177957

ABSTRACT

The distinct electronic properties, including p-type semiconducting and a wide optical band gap, renders SnO suitable for applications such as microelectronic devices, gas sensors and electrodes. However, the synthesis of SnO is rather challenging due to the instability of the oxide, which is usually obtained as a by-product of SnO2 fabrication. In this work, we developed a bioinspired synthesis, based on a hydrothermal approach, for the direct production of SnO nanoparticles. The amount of mineralizer, inducing the precipitation, was identified, which supports a template-free formation of the nanosized SnO particles at low temperature and mild chemical conditions. Moreover, the SnO nanoparticles exhibit a shape of unique three-dimensional crosses similar to the calcite crosses present in the calcareous sponges. We demonstrated that SnO crosses are evenly distributed and embedded in an organic scaffold by an ice-templating approach, in this way closely mimicking the structure of calcareous sponges. Such scaffolds, reinforced by an active material, here SnO, could be used as filters, sensors or electrodes, where a high surface area and good accessibility are essential. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology (part 2)'.

6.
J Nanosci Nanotechnol ; 19(9): 5674-5686, 2019 09 01.
Article in English | MEDLINE | ID: mdl-30961724

ABSTRACT

Recently, there has been growing attention and effort to search for new microbicidal drugs which present different mode of action from those already existing, as an alternative to the global threat of fungal and bacterial multi drug resistance (MDR). Here we propose biological synthesis of SnO2 nanoparticles using mammalian cells as an economic and ecofriendly platform. This presents a novel biogenic method for SnO2 synthesis using metal binding peptides extracted from MCF-7 human cancer cells, which induces the biomineralization of SnO2 nanoparticles. A series of electron donor functional groups and metal binding sites in these peptides reacts with Sn2+ ions and directs the growth of SnO2 nanoparticles without addition of toxic redox and capping agents in the reaction system. Since peptides present reactive sites in aqueous solution at room temperature, a facile reaction environment can be easily achieved. Furthermore, by tuning the reactants' concentration and pH, the size, shape and 3D-structures of SnO2 nanoparticles can be controlled. Peptides also ensure biocompatibility, and SnO2 nanoparticles provide antibacterial properties, which broadens their applications in biomedical fields.


Subject(s)
Biomineralization , Nanoparticles , Anti-Bacterial Agents/pharmacology , Humans , Peptides , Tin Compounds
7.
Materials (Basel) ; 12(6)2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30889924

ABSTRACT

The size and morphology of metal oxide particles have a large impact on the physicochemical properties of these materials, e.g., the aspect ratio of particles affects their catalytic activity. Bioinspired synthesis routes give the opportunity to control precisely the structure and aspect ratio of the metal oxide particles by bioorganic molecules, such as peptides. This study focusses on the identification of tin(II) oxide (tin monoxide, SnO) binding peptides, and their effect on the synthesis of crystalline SnO microstructures. The phage display technique was used to identify the 7-mer peptide SnBP01 (LPPWKLK), which shows a high binding affinity towards crystalline SnO. It was found that the derivatives of the SnBP01 peptide, varying in peptide length and thus in their interaction, significantly affect the aspect ratio and the size dimension of mineralized SnO particles, resulting in flower-like morphology. Furthermore, the important role of the N-terminal leucine residue in the peptide for the strong organic⁻inorganic interaction was revealed by FTIR investigations. This bioinspired approach shows a facile procedure for the detailed investigation of peptide-to-metal oxide interactions, as well as an easy method for the controlled synthesis of tin(II) oxide particles with different morphologies.

8.
Adv Mater ; 31(6): e1805597, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30548703

ABSTRACT

Polycrystalline piezo-active materials only exhibit a high macroscopic piezoresponse if they consist of particles with oriented crystal directions and aligned intrinsic dipole moments. For ferroelectric materials, the postsynthesis alignment of the dipoles is generally achieved by electric poling procedures. However, there are numerous technically interesting non-ferroelectric piezo-active materials like zinc oxide (ZnO). These materials demand the alignment of their intrinsic dipoles during the fabrication process. Therefore, in situ-poling techniques have to be developed. This study utilizes genetically modified M13 phage templates for the generation of force fields, which directly control the ZnO dipole poling. By genetic modification of M13 phage template, the piezoelectric response of the ZnO/M13 phage hybrid nanowire is doubled compared to the hybrid nanowire based on unmodified M13 wild type (wt) phage templates. Thus, the formation of piezo-active domains consisting of oriented ZnO nanocrystals is directly induced by the genetic modification. By the combination of the fiber-like structure of individual M13 phages with the bioenhanced electromechanical properties of ZnO, hybrid nanowires with a length of ≈1.1 µm and a thickness of ≈63.5 nm are fabricated with a high piezoelectric coefficient of up to d33 = 7.8 pm V-1 for genetically modified M13 phage templates.


Subject(s)
Bacteriophage M13/chemistry , Ferrosoferric Oxide/chemistry , Nanowires/chemistry , Zinc Oxide/chemistry , Amino Acid Sequence , Amino Acids/chemistry , Electricity , Physical Phenomena , Thermodynamics
9.
Acta Biomater ; 71: 61-71, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29499399

ABSTRACT

Cancer cells have the capacity to synthesize nanoparticles (NPs). The detailed mechanism of this process is not very well documented. We report the mechanism of biomineralization of aqueous gold chloride into NPs and microplates in the breast-cancer cell line MCF7. Spherical gold NPs are synthesized in these cells in the presence of serum in the culture media by the reduction of HAuCl4. In the absence of serum, the cells exhibit gold microplate formation through seed-mediate growth albeit slower reduction. The structural characteristics of the two types of NPs under different media conditions were confirmed using scanning electron microscopy (SEM); crystallinity and metallic properties were assessed with transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). Gold-reducing proteins, related to cell stress initiate the biomineralization of HAuCl4 in cells (under serum free conditions) as confirmed by infrared (IR) spectroscopy. MCF7 cells undergo irreversible replicative senescence when exposed to a high concentration of ionic gold and conversely remain in a dormant reversible quiescent state when exposed to a low gold concentration. The latter cellular state was achievable in the presence of the rho/ROCK inhibitor Y-27632. Proteomic analysis revealed consistent expression of specific proteins under serum and serum-free conditions. A high-throughput proteomic approach to screen gold-reducing proteins and peptide sequences was utilized and validated by quartz crystal microbalance with dissipation (QCM-D). STATEMENT OF SIGNIFICANCE: Cancer cells are known to synthesize gold nanoparticles and microstructures, which are promising for bioimaging and other therapeutic applications. However, the detailed mechanism of such biomineralization process is not well understood yet. Herein, we demonstrate that cancer cells exposed to gold ions (grown in serum/serum-free conditions) secrete shock and stress-related proteins with specific gold-binding/reducing polypeptides. Cells undergo reversible senescence and can recover normal physiology when treated with the senescence inhibitor depending on culture condition. The use of mammalian cells as microincubators for synthesis of such particles could have potential influence on their uptake and biocompatibility. This study has important implications for in-situ reduction of ionic gold to anisotropic micro-nanostructures that could be used in-vivo clinical applications and tumor photothermal therapy.


Subject(s)
Gold , Metal Nanoparticles , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Peptides/metabolism , Humans , MCF-7 Cells , Neoplasms/pathology
10.
J Mater Chem B ; 6(46): 7573-7581, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-32254879

ABSTRACT

A surfactant-less, seed mediated, biological synthesis of two dimensional (2-D) nanoribbons in the presence of breast cancer cells (MCF7) is demonstrated. The diameter and yield of nanoribbons are tunable via seeds and gold precursor concentration. Such crystalline nanoribbons serve to enhance the Raman signals over MCF7 cells. The side and slopes of the triangular nanoplatelets fused as nanoribbons exhibit plasmon excitement in quadrupole resonance modes in the infrared region. Consequently, when irradiated with an infrared laser they show an excellent photothermal effect and rapid rise in temperature. The experimental results verified by finite-difference time-domain (FTDT) calculations reveal the presence of wedge-plasmon polaritons propagating along the edges of the nanoribbons. These simulations confirm that long aspect ratio nanoribbon's edges and vertices act as an active optical waveguide, allowing for heat propagation along the long axis, killing cancer cells in the process at lower power doses.

SELECTION OF CITATIONS
SEARCH DETAIL
...