Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Healthcare (Basel) ; 11(2)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36673552

ABSTRACT

The number of hip fractures per year worldwide is estimated to reach 6 million by the year 2050. Despite the many advantages of regional blockades when managing pain from such a fracture, these are used to a lesser extent than general analgesia. One reason is that the opportunities for training and obtaining clinical experience in applying nerve blocks can be a challenge in many clinical settings. Ultrasound image guidance based on artificial intelligence may be one way to increase nerve block success rate. We propose an approach using a deep learning semantic segmentation model with U-net architecture to identify the femoral nerve in ultrasound images. The dataset consisted of 1410 ultrasound images that were collected from 48 patients. The images were manually annotated by a clinical professional and a segmentation model was trained. After training the model for 350 epochs, the results were validated with a 10-fold cross-validation. This showed a mean Intersection over Union of 74%, with an interquartile range of 0.66-0.81.

2.
J Biomed Opt ; 18(12): 127005, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24362929

ABSTRACT

Preterm newborn infants have a high morbidity rate. The most frequently affected organs where free gas is involved are the lungs and intestines. In respiratory distress syndrome, both hyperexpanded and atelectatic (collapsed) areas occur, and in necrotizing enterocolitis, intramural gas may appear in the intestine. Today, these conditions are diagnosed with x-ray radiography. A bed-side, rapid, nonintrusive, and gas-specific technique for in vivo gas sensing would improve diagnosis. We report the use of noninvasive laser spectroscopy, for the first time, to assess gas content in the lungs and intestines of three full-term infants. Water vapor and oxygen were studied with two low-power diode lasers, illuminating the skin and detecting light a few centimeters away. Water vapor was easily detected in the intestines and was also observed in the lungs. The relatively thick chest walls of the infants prevented detection of the weaker oxygen signal in this study. However, results from a previous phantom study, together with scaling of the results presented here to the typical chest-wall thickness of preterm infants, suggest that oxygen also should be detectable in their lungs.


Subject(s)
Gases/analysis , Intestines/physiology , Lasers, Semiconductor , Lung/physiology , Monitoring, Physiologic/instrumentation , Spectrum Analysis/instrumentation , Feasibility Studies , Female , Humans , Infant , Infant, Newborn , Intestines/diagnostic imaging , Lung/diagnostic imaging , Male , Monitoring, Physiologic/methods , Phantoms, Imaging , Spectrum Analysis/methods , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...