Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38781056

ABSTRACT

Deep learning (DL) models have emerged as alternative methods to conventional ultrasound (US) signal processing, offering the potential to mimic signal processing chains, reduce inference time, and enable the portability of processing chains across hardware. This paper proposes a DL model that replicates the fine-tuned BMode signal processing chain of a high-end US system and explores the potential of using it with a different probe and a lower-end system. A deep neural network was trained in a supervised manner to map raw beamformed in-phase and quadrature component data into processed images. The dataset consisted of 30,000 cardiac image frames acquired using the GE HealthCare Vivid E95 system with the 4Vc-D matrix array probe. The signal processing chain includes depth-dependent bandpass filtering, elevation compounding, frequency compounding, and image compression and filtering. The results indicate that a lightweight DL model can accurately replicate the signal processing chain of a commercial scanner for a given application. Evaluation on a 15 patient test dataset of about three thousand image frames gave a structural similarity index measure of 98.56 ± 0.49. Applying the DL model to data from another probe showed equivalent or improved image quality. This indicates that a single DL model may be used for a set of probes on a given system that targets the same application, which could be a cost-effective tuning and implementation strategy for vendors. Further, the DL model enhanced image quality on a Verasonics dataset, suggesting the potential to port features from high-end US systems to lower-end counterparts.

2.
IEEE J Biomed Health Inform ; 26(9): 4450-4461, 2022 09.
Article in English | MEDLINE | ID: mdl-35679388

ABSTRACT

BACKGROUND: Miniaturized accelerometers incorporated in pacing leads attached to the myocardium, are used to monitor cardiac function. For this purpose functional indices must be extracted from the acceleration signal. A method that automatically detects the time of aortic valve opening (AVO) and aortic valve closure (AVC) will be helpful for such extraction. We tested if deep learning can be used to detect these valve events from epicardially attached accelerometers, using high fidelity pressure measurements to establish ground truth for these valve events. METHOD: A deep neural network consisting of a CNN, an RNN, and a multi-head attention module was trained and tested on 130 recordings from 19 canines and 159 recordings from 27 porcines covering different interventions. Due to limited data, nested cross-validation was used to assess the accuracy of the method. RESULT: The correct detection rates were 98.9% and 97.1% for AVO and AVC in canines and 98.2% and 96.7% in porcines when defining a correct detection as a prediction closer than 40 ms to the ground truth. The incorrect detection rates were 0.7% and 2.3% for AVO and AVC in canines and 1.1% and 2.3% in porcines. The mean absolute error between correct detections and their ground truth was 8.4 ms and 7.2 ms for AVO and AVC in canines, and 8.9 ms and 10.1 ms in porcines. CONCLUSION: Deep neural networks can be used on signals from epicardially attached accelerometers for robust and accurate detection of the opening and closing of the aortic valve.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Accelerometry , Animals , Dogs , Neural Networks, Computer
3.
Article in English | MEDLINE | ID: mdl-32746157

ABSTRACT

Electrocardiogram (ECG) is often used together with a spectral Doppler ultrasound to separate heart cycles by determining the end-diastole locations. However, the ECG signal is not always recorded. In such cases, the cardiac cycles can be estimated manually from the ultrasound data retrospectively. We present a deep learning-based method for automatic detection of the end-diastoles in spectral Doppler spectrograms. The method uses a combination of a convolutional neural network (CNN) for extracting features and a recurrent neural network (RNN) for modeling temporal relations. In echocardiography, there are three Doppler spectrogram modalities, continuous wave, pulsed wave, and tissue velocity Doppler. Both the training and test data sets include all three modalities. The model was tested on 643 spectrograms coming from different hospitals than in the training data set. For the purposes described in this work, a valid end-diastole detection is defined as a prediction being closer than 60 ms to the reference value. We will refer to these as true detections. Similarly, a prediction farther away is defined as nonvalid or false detections. The method automatically rejects spectrograms where the detection of an end-diastole has low confidence. When setting the algorithm to reject 1.9%, the method achieved 97.7% true detections with a mean error of 14 ms and had 2.5% false detections on the remaining spectrograms.


Subject(s)
Deep Learning , Diastole/physiology , Heart/diagnostic imaging , Ultrasonography, Doppler/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...