Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Public Health Res (Southampt) ; 11(6): 1-229, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37786938

ABSTRACT

Background: Office workers spend 70-85% of their time at work sitting. High levels of sitting have been linked to poor physiological and psychological health. Evidence shows the need for fully powered randomised controlled trials, with long-term follow-up, to test the effectiveness of interventions to reduce sitting time. Objective: Our objective was to test the clinical effectiveness and cost-effectiveness of the SMART Work & Life intervention, delivered with and without a height-adjustable workstation, compared with usual practice at 12-month follow-up. Design: A three-arm cluster randomised controlled trial. Setting: Councils in England. Participants: Office workers. Intervention: SMART Work & Life is a multicomponent intervention that includes behaviour change strategies, delivered by workplace champions. Clusters were randomised to (1) the SMART Work & Life intervention, (2) the SMART Work & Life intervention with a height-adjustable workstation (i.e. SMART Work & Life plus desk) or (3) a control group (i.e. usual practice). Outcome measures were assessed at baseline and at 3 and 12 months. Main outcome measures: The primary outcome was device-assessed daily sitting time compared with usual practice at 12 months. Secondary outcomes included sitting, standing, stepping time, physical activity, adiposity, blood pressure, biochemical measures, musculoskeletal issues, psychosocial variables, work-related health, diet and sleep. Cost-effectiveness and process evaluation data were collected. Results: A total of 78 clusters (756 participants) were randomised [control, 26 clusters (n = 267); SMART Work & Life only, 27 clusters (n = 249); SMART Work & Life plus desk, 25 clusters (n = 240)]. At 12 months, significant differences between groups were found in daily sitting time, with participants in the SMART Work & Life-only and SMART Work & Life plus desk arms sitting 22.2 minutes per day (97.5% confidence interval -38.8 to -5.7 minutes/day; p = 0.003) and 63.7 minutes per day (97.5% confidence interval -80.0 to -47.4 minutes/day; p < 0.001), respectively, less than the control group. Participants in the SMART Work & Life plus desk arm sat 41.7 minutes per day (95% confidence interval -56.3 to -27.0 minutes/day; p < 0.001) less than participants in the SMART Work & Life-only arm. Sitting time was largely replaced by standing time, and changes in daily behaviour were driven by changes during work hours on workdays. Behaviour changes observed at 12 months were similar to 3 months. At 12 months, small improvements were seen for stress, well-being and vigour in both intervention groups, and for pain in the lower extremity and social norms in the SMART Work & Life plus desk group. Results from the process evaluation supported these findings, with participants reporting feeling more energised, alert, focused and productive. The process evaluation also showed that participants viewed the intervention positively; however, the extent of engagement varied across clusters. The average cost of SMART Work & Life only and SMART Work & Life plus desk was £80.59 and £228.31 per participant, respectively. Within trial, SMART Work & Life only had an incremental cost-effectiveness ratio of £12,091 per quality-adjusted life-year, with SMART Work & Life plus desk being dominated. Over a lifetime, SMART Work & Life only and SMART Work & Life plus desk had incremental cost-effectiveness ratios of £4985 and £13,378 per quality-adjusted life-year, respectively. Limitations: The study was carried out in one sector, limiting generalisability. Conclusions: The SMART Work & Life intervention, provided with and without a height-adjustable workstation, was successful in changing sitting time. Future work: There is a need for longer-term follow-up, as well as follow-up within different organisations. Trial registration: Current Controlled Trials ISRCTN11618007.


Office workers spend a large proportion of their day sitting. High levels of sitting have been linked to diseases, such as type 2 diabetes, heart disease and some cancers. The SMART Work & Life intervention is designed to reduce office workers' sitting time inside and outside work. The SMART Work & Life intervention involves organisational, environmental, group and individual strategies to encourage a reduction in sitting time and was designed to be delivered with and without a height-adjustable workstation (which allows the user to switch between sitting and standing while working). To test whether or not the SMART Work & Life intervention worked, we recruited 756 office workers from councils in Leicester/Leicestershire, Greater Manchester and Liverpool, UK. Participants were from 78 office groups. One-third of the participants received the intervention, one-third received the intervention with a height-adjustable workstation and one-third were a control group (and carried on as usual). Workplace champions in each office group were given training and resources to deliver the intervention. Data were collected at the start of the study, with follow-up measurements at 3 and 12 months. We measured sitting time using a small device worn on the thigh and collected data on weight, body fat, blood pressure, blood sugar and cholesterol levels. We asked participants about their health and work and spoke to participants to find out what they thought of the intervention. Our results showed that participants who received the intervention without workstation sat for 22 minutes less per day, and participants who received the intervention with workstation sat for 64 minutes less per day, than participants in the control group. Levels of stress, well-being, vigour (i.e. personal and emotional energy and cognitive liveliness) and pain in the lower extremity appeared to improve in the intervention groups. Participants viewed the intervention positively and reported several benefits, such as feeling more energised, alert, focused and productive; however, the extent to which participants engaged with the intervention varied across groups.


Subject(s)
Occupational Health , Humans , Exercise , Health Behavior , Sedentary Behavior , Workplace
2.
BMJ ; 378: e069288, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35977732

ABSTRACT

OBJECTIVES: To evaluate the effectiveness of an intervention, with and without a height adjustable desk, on daily sitting time, and to investigate the relative effectiveness of the two interventions, and the effectiveness of both interventions on physical behaviours and physical, biochemical, psychological, and work related health and performance outcomes. DESIGN: Cluster three arm randomised controlled trial with follow-up at three and 12 months. SETTING: Local government councils in Leicester, Liverpool, and Greater Manchester, UK. PARTICIPANTS: 78 clusters including 756 desk based employees in defined offices, departments, or teams from two councils in Leicester, three in Greater Manchester, and one in Liverpool. INTERVENTIONS: Clusters were randomised to one of three conditions: the SMART Work and Life (SWAL) intervention, the SWAL intervention with a height adjustable desk (SWAL plus desk), or control (usual practice). MAIN OUTCOMES MEASURES: The primary outcome measure was daily sitting time, assessed by accelerometry, at 12 month follow-up. Secondary outcomes were accelerometer assessed sitting, prolonged sitting, standing and stepping time, and physical activity calculated over any valid day, work hours, workdays, and non-workdays, self-reported lifestyle behaviours, musculoskeletal problems, cardiometabolic health markers, work related health and performance, fatigue, and psychological measures. RESULTS: Mean age of participants was 44.7 years, 72.4% (n=547) were women, and 74.9% (n=566) were white. Daily sitting time at 12 months was significantly lower in the intervention groups (SWAL -22.2 min/day, 95% confidence interval -38.8 to -5.7 min/day, P=0.003; SWAL plus desk -63.7 min/day, -80.1 to -47.4 min/day, P<0.001) compared with the control group. The SWAL plus desk intervention was found to be more effective than SWAL at changing sitting time (-41.7 min/day, -56.3 to -27.0 min/day, P<0.001). Favourable differences in sitting and prolonged sitting time at three and 12 month follow-ups for both intervention groups and for standing time for the SWAL plus desk group were observed during work hours and on workdays. Both intervention groups were associated with small improvements in stress, wellbeing, and vigour, and the SWAL plus desk group was associated with improvements in pain in the lower extremity, social norms for sitting and standing at work, and support. CONCLUSIONS: Both SWAL and SWAL plus desk were associated with a reduction in sitting time, although the addition of a height adjustable desk was found to be threefold more effective. TRIAL REGISTRATION: ISRCTN Registry ISRCTN11618007.


Subject(s)
Occupational Health , Sitting Position , Accelerometry , Adult , Exercise , Female , Humans , Male , Posture , Workplace
3.
Int J Behav Nutr Phys Act ; 17(1): 55, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32349761

ABSTRACT

BACKGROUND: Excessive sedentary behaviour (sitting) is a risk factor for poor health in children and adults. Incorporating sit-stand desks in the classroom environment has been highlighted as a potential strategy to reduce children's sitting time. The primary aim of this study was to examine the feasibility of conducting a cluster randomised controlled trial (RCT) of a sit-stand desk intervention within primary school classrooms. METHODS: We conducted a two-armed pilot cluster RCT involving 8 primary schools in Bradford, United Kingdom. Schools were randomised on a 1:1 basis to the intervention or usual practice control arm. All children (aged 9-10 years) in participating classes were eligible to take part. Six sit-stand desks replaced three standard desks (sitting 6 children) in the intervention classrooms for 4.5-months. Teachers were encouraged to use a rotation system to ensure all pupils were exposed to the sit-stand desks for > 1 h/day on average. Trial feasibility outcomes (assessed using quantitative and qualitative measures) included school and participant recruitment and attrition, intervention and outcome measure completion rates, acceptability, and preliminary effectiveness of the intervention for reducing sitting time. A weighted linear regression model compared changes in weekday sitting time (assessed using the activPAL accelerometer) between trial arms. RESULTS: School and child recruitment rates were 33% (n = 8) and 75% (n = 176). At follow-up, retention rates were 100% for schools and 97% for children. Outcome measure completion rates ranged from 63 to 97%. A preliminary estimate of intervention effectiveness revealed a mean difference in change in sitting of - 30.6 min/day (95% CI: - 56.42 to - 4.84) in favour of the intervention group, after adjusting for baseline sitting and wear time. Qualitative measures revealed the intervention and evaluation procedures were acceptable to teachers and children, except for some problems with activPAL attachment. CONCLUSION: This study provides evidence of the acceptability and feasibility of a sit-stand desk intervention and evaluation methods. Preliminary evidence suggests the intervention showed potential in reducing children's weekday sitting but some adaptations to the desk rotation system are needed to maximize exposure. Lessons learnt from this trial will inform the planning of a definitive trial. TRIAL REGISTRATION: ISRCTN12915848 (registered: 09/11/16).


Subject(s)
Ergonomics/methods , Sedentary Behavior , Sitting Position , Child , Feasibility Studies , Female , Humans , Male , Pilot Projects , Schools , United Kingdom
4.
Pilot Feasibility Stud ; 4: 103, 2018.
Article in English | MEDLINE | ID: mdl-29850027

ABSTRACT

BACKGROUND: Sedentary behaviour (sitting) is a highly prevalent negative health behaviour, with individuals of all ages exposed to environments that promote prolonged sitting. Excessive sedentary behaviour adversely affects health in children and adults. As sedentary behaviour tracks from childhood into adulthood, the reduction of sedentary time in young people is key for the prevention of chronic diseases that result from excessive sitting in later life. The sedentary school classroom represents an ideal setting for environmental change, through the provision of sit-stand desks. Whilst the use of sit-stand desks in classrooms demonstrates positive effects in some key outcomes, evidence is currently limited by small samples and/or short intervention durations, with few studies adopting randomised controlled trial (RCT) designs. This paper describes the protocol of a pilot cluster RCT of a sit-stand desk intervention in primary school classrooms. METHODS/DESIGN: A two-arm pilot cluster RCT will be conducted in eight primary schools (four intervention, four control) with at least 120 year 5 children (aged 9-10 years). Sit-stand desks will replace six standard desks in the intervention classrooms. Teachers will be encouraged to ensure all pupils are exposed to the sit-stand desks for at least 1 h/day on average using a rotation system. Schools assigned to the control arm will continue with their usual practice, no environmental changes will be made to their classrooms. Measurements will be taken at baseline, before randomisation, and at the end of the schools' academic year. In this study, the primary outcomes of interest will be school and participant recruitment and attrition, acceptability of the intervention, and acceptability and compliance to the proposed outcome measures (including activPAL-measured school-time and school-day sitting, accelerometer-measured physical activity, adiposity, blood pressure, cognitive function, academic progress, engagement, and behaviour) for inclusion in a definitive trial. A full process evaluation and an exploratory economic evaluation will also be conducted to further inform a definitive trial. DISCUSSION: The primary output of this study will be acceptability data to inform the development of a definitive cluster RCT designed to examine the efficacy of this intervention on health- and education-related outcomes in UK primary school children. TRIAL REGISTRATION: ISRCTN12915848 (retrospectively registered, date registered 9 November 2016).

SELECTION OF CITATIONS
SEARCH DETAIL
...