Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Med Infect Dis ; 8(7)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37505630

ABSTRACT

Saposin-like protein-2 (SAP-2) and leucine aminopeptidase (LAP) are major proteins involved in the digestive process of Fasciola gigantica (Fg). Both SAP-2 and LAP are highly expressed in F. gigantica; therefore, they could be vaccine candidates for fasciolosis. The aims of this study are (1) to observe the tissue expression of F. gigantica SAP-2 (FgSAP-2) and F. gigantica LAP (FgLAP) in F. gigantica by indirect immunofluorescence technique under confocal microscopy and (2) to test the vaccine potentials of individual and combined recombinant (r) FgSAP-2 and rFgLAP against F. gigantica in Imprinting Control Region (ICR) mice (n = 10 per group). By indirect immunofluorescence-confocal microscopy, FgSAP-2 and FgLAP were localized in the caecal epithelium but at different sites: FgSAP-2 appeared in small granules that are distributed in the middle and lower parts of the cytoplasm of epithelial cells, while FgLAP appeared as a line or zone in the apical cytoplasm of caecal epithelial cells. For vaccine testing, the percent protection of combined rFgSAP-2 and rFgLAP vaccines against F. gigantica was at 80.7 to 81.4% when compared with aluminum hydroxide (alum) adjuvant and unimmunized controls, respectively. The levels of IgG1 and IgG2a in the sera were significantly increased in single and combine vaccinated groups compared with the control groups. Vaccinated mice showed reduced liver damage when compared with control groups. This study indicates that the combined rFgSAP-2 and rFgLAP vaccine had a higher vaccine potential than a single vaccine. These results support the further testing and application of this combined vaccine against F. gigantica infection in farmed livestock animals.

2.
Vet Parasitol ; 276: 108979, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31778940

ABSTRACT

Glutathione peroxidases (GPx), major antioxidant enzymes, secreted by Fasciola spp., are important for the parasite evasion and protection against the host's immune responses. In the present study, a monoclonal antibody (MoAb) against recombinant F. gigantica glutathione peroxidase (rFgGPx) was produced by hybridoma technique using spleen cells from BALB/c mice immunized with rFgGPx. This MoAb (named 7B8) is IgG1 with κ light chains, and it reacted specifically with rFgGPx at a molecular weight 19 kDa as shown by immunoblotting, and reacted with the native FgGPx in the extracts of whole body (WB), metacercariae, newly excysted juveniles (NEJs), 4 week-old juveniles and adult F. gigantica as shown by indirect ELISA. It did not cross react with antigens in WB fractions from other adult trematodes, including Fischoederius cobboldi, Paramphistomum cervi, Setaria labiato-papillosa, Eurytrema pancreaticum, Gastrothylax crumenifer and Gigantocotyle explanatum. By immunolocalization, MoAb against rFgGPx reacted with the native protein in the tegument, vitelline cells, and eggs of adult F. gigantica. In addition, the sera from mice experimentally infected with F. gigantica were tested positive by this indirect sandwich ELISA. This result indicated that FgGPx is an abundantly expressed parasite protein that is secreted into the tegumental antigens (TA), therefore, FgGPx and its MoAb may be used for immunodiagnosis of both early and late fasciolosis gigantica in animals and humans.


Subject(s)
Antibodies, Monoclonal/immunology , Fasciola/enzymology , Fasciola/immunology , Fascioliasis/diagnosis , Glutathione Peroxidase/immunology , Animals , Antigens, Helminth/immunology , Cricetinae , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Female , Immunohistochemistry , Lymnaea/parasitology , Mice , Mice, Inbred BALB C , Rabbits
3.
Acta Trop ; 162: 75-82, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27338185

ABSTRACT

Superoxide dismutases (SOD), antioxidant metallo-enzymes, are a part of the first line of defense in the trematode parasites which act as the chief scavengers for reactive oxygen species (ROS). A recombinant Fasciola gigantica cytosolic SOD (FgSOD) was expressed in Escherichia coli BL21 (DE3) and used for immunizing rabbits to obtain polyclonal antibodies (anti-rFgSOD). This rabbit anti-rFgSOD reacted with the native FgSOD at a molecular weight of 17.5kDa. The FgSOD protein was expressed at high level in parenchyma, caecal epithelium and egg of the parasite. The rFgSOD reacted with antisera from rabbits infected with F. gigantica metacercariae collected at 2, 5, and 7 weeks after infection, and reacted with sera of infected mice. Anti-rFgSOD exhibited cross reactivity with the other parasites' antigens, including Eurytrema pancreaticum, Cotylophoron cotylophorum, Fischoederius cobboldi, Gastrothylax crumenifer, Paramphistomum cervi, and Setaria labiato papillosa. A vaccination was performed in imprinting control region (ICR) mice by subcutaneous injection with 50µg of rFgSOD combined with Freund's adjuvant. At 2 weeks after the second boost, mice were infected with 15 metacercariae by oral route. IgG1 and IgG2a in the immune sera were determined to indicate Th2 and Th1 immune responses. It was found that the parasite burden was reduced by 45%, and both IgG1 and IgG2a levels showed correlation with the numbers of worm recoveries.


Subject(s)
Cytosol/metabolism , Fasciola/immunology , Fascioliasis/immunology , Metacercariae/parasitology , Recombinant Proteins/immunology , Superoxide Dismutase/immunology , Superoxide Dismutase/metabolism , Adult , Animals , Antibodies, Helminth/blood , Cross Reactions , Cytosol/immunology , Fascioliasis/blood , Freund's Adjuvant/therapeutic use , Humans , Immunoglobulin G/blood , Mice , Rabbits , Recombinant Proteins/blood , Superoxide Dismutase/therapeutic use
4.
Acta Trop ; 150: 71-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26116785

ABSTRACT

In Fasciola gigantica cathepsin L1 (CatL1) is a family of predominant proteases that is expressed in caecal epithelial cells and secreted into the excretory-secretory products (ES). CatL1 isotypes are expressed in both early and late stages of the life cycle and the parasites use them for migration and digestion. Therefore, CatL1 is a plausible target for vaccination against this parasite. Recombinant pro-F.gigantica CatL1 (rproFgCatL1) and recombinant mature F.gigantica CatL1 (rmatFgCatL1) were expressed in Escherichia coli BL21. The vaccination was performed in Imprinting Control Region (ICR) mice (n=10) by subcutaneous injection with 50µg of rproFgCatL1 and rmatFgCatL1 combined with Freund's adjuvant. Two weeks after the second boost, mice were infected with 15 metacercariae by the oral route. The level of protection of rproFgCatL1 and rmatFgCatL1 vaccines was estimated to be 39.1, 41.7% and 44.9, 47.2% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. Antibodies in the immune sera of vaccinated mice were shown by immuno-blotting to react with the native FgCatL1 in the extract of newly excysted juveniles (NEJ), 4-week-old juveniles and the ES products of 4 week-old juveniles. By determining the levels of IgG1 and IgG2a in the immune sera, which are indicative of Th2 and Th1 immune response, respectively, it was found that both Th1 and Th2 responses were significantly increased in rproFgCatL1- and rmatFgCatL1-immunized groups compared with the control groups, with higher levels of Th2 (IgG1) than Th1 (IgG2a). The levels of serum aspartate aminotransferase (AST) and alanine transaminase (ALT) in rmatFgCatL1-immunized group showed a significant decrease when compared to rproFgCatL1-immunized group, indicating that rmatFgCatL1-vaccinated mice had reduced liver parenchyma damage. The pathological lesions of liver in vaccinated groups were significantly decreased when compared with control groups. This study indicates that rFgCatL1 has a potential as a vaccine candidate against F. gigantica in mice, and this potential will be tested in ruminants.


Subject(s)
Antigens, Helminth/immunology , Cathepsin L/immunology , Fasciola/immunology , Fascioliasis/prevention & control , Animals , Antibodies, Helminth/blood , Antigens, Helminth/genetics , Disease Models, Animal , Fascioliasis/immunology , Male , Mice , Mice, Inbred ICR , Recombinant Proteins/immunology , Vaccination , Vaccines/immunology
5.
Parasitol Res ; 114(6): 2119-27, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25782678

ABSTRACT

The Fasciola gigantica thioredoxin-glutathione reductase (FgTGR) gene is a fusion between thioredoxin reductase (TR) and a glutaredoxin (Grx) gene. FgTGR was cloned by polymerase chain reaction (PCR) from adult complementary DNA (cDNA), and its sequences showed two isoforms, i.e., the cytosolic and mitochondrial FgTGR. Cytosolic FgTGR (cytFgTGR) was composed of 2370 bp, and its peptide had no signal sequence and hence was not a secreted protein. Mitochondrial FgTGR (mitFgTGR) was composed of 2506 bp with a signal peptide of 43 amino acids; therefore, it was a secreted protein. The putative cytFgTGR and mitFgTGR peptides comprised of 598 and 641 amino acids, respectively, with a molecular weight of 65.8 kDa for cytFgTGR and mitFgTGR, with a conserved sequence (CPYC) of TR, and ACUG and CVNVGC of Grx domains. The recombinant FgTGR (rFgTGR) was expressed in Escherichia coli BL21 (DE3) and used for production for a polyclonal antibody in rabbits (anti-rFgTGR). The FgTGR protein expression, estimated by indirect ELISA using the rabbit anti-rFgTGR as probe, showed high levels of expression in eggs, and 2- and 4-week-old juveniles and adults. The rFgTGR exhibited specific activities in the 5,5'-dithiobis (2-nitro-benzoic acid) (DTNB) reductase assay for TR activity and in ß-hydroxyethul disulfide (HED) for Grx activity. When analyzed by immunoblotting and immunohistochemistry, rabbit anti-rFgTGR reacted with natural FgTGR at a molecular weight of 66 kDa from eggs, whole body fraction (WB) of metacercariae, NEJ, 2- and 4-week-old juveniles and adults, and the tegumental antigen (TA) of adult. The FgTGR protein was expressed at high levels in the tegument of 2- and 4-week-old juveniles. The FgTGR may be one of the major factors acting against oxidative stresses that can damage the parasite; hence, it could be considered as a novel vaccine or a drug target.


Subject(s)
Fasciola/enzymology , Glutathione Reductase/genetics , Thioredoxins/genetics , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , DNA, Complementary/chemistry , DNA, Complementary/genetics , Fasciola/chemistry , Fasciola/cytology , Fasciola/genetics , Glutathione Reductase/metabolism , Protein Transport , Rabbits , Recombinant Proteins , Sequence Alignment , Sequence Analysis, DNA , Thioredoxins/metabolism
6.
Parasitol Res ; 114(1): 133-40, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25324133

ABSTRACT

Cathepsin Ls (CatLs), the major cysteine protease secreted by Fasciola spp., are important for parasite digestion and tissue invasion. Fasciola gigantica cathepsin L1H (FgCatL1H) is the isotype expressed in the early stages for migration and invasion. In the present study, a monoclonal antibody (MoAb) against recombinant F. gigantica cathepsin L1H (rFgCatL1H) was produced by hybridoma technique using spleen cells from BALB/c mice immunized with recombinant proFgCatL1H (rproFgCatL1H). This MoAb is an immunoglobulin (Ig)G1 with κ light chain isotype. The MoAb reacted specifically with rproFgCatL1H, the native FgCatL1H at a molecular weight (MW) 38 to 48 kDa in the extract of whole body (WB) of metacercariae and newly excysted juvenile (NEJ) and cross-reacted with rFgCatL1 and native FgCatLs at MW 25 to 28 kDa in WB of 2- and 4-week-old juveniles, adult, and adult excretory-secretory (ES) fractions by immunoblotting and indirect ELISA. It did not cross-react with antigens in WB fractions from other parasites, including Gigantocotyle explanatum, Paramphistomum cervi, Gastrothylax crumenifer, Eurytrema pancreaticum, Setaria labiato-papillosa, and Fischoederius cobboldi. By immunolocalization, MoAb against rFgCatL1H reacted with the native protein in the gut of metacercariae and NEJ and also cross-reacted with CatL1 in 2- and 4-week-old juveniles and adult F. gigantica. Therefore, FgCatL1H and its MoAb may be used for immunodiagnosis of both early and late fasciolosis in ruminants and humans.


Subject(s)
Antibodies, Monoclonal/immunology , Cathepsin L/metabolism , Fasciola/physiology , Immunoglobulin G/immunology , Adolescent , Animals , Cathepsin L/genetics , Cathepsin L/immunology , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Fasciola/immunology , Fascioliasis/parasitology , Humans , Immunoblotting , Immunologic Tests , Metacercariae , Mice , Mice, Inbred BALB C , Recombinant Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...