Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36834918

ABSTRACT

Luminal breast cancer subtypes respond poorly to endocrine and trastuzumab treatments due to cellular heterogeneity arising from the phenotype transitions, accounted for mainly by the loss of receptor expression. The origins of basal-like and human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer subtypes have been attributed to genetic and protein modifications in stem-like cells and luminal progenitor cell populations, respectively. The post-transcriptional regulation of protein expression is known to be influenced by microRNAs (miRNAs) that are deemed to be master regulators of several biological processes in breast tumorigenesis and progression. Our objective was to identify the fractions of luminal breast cancer cells that share stemness potentials and marker profiles and to elucidate the molecular regulatory mechanism that drives transitions between fractions, leading to receptor discordances. Established breast cancer cell lines of all prominent subtypes were screened for the expression of putative cancer stem cell (CSC) markers and drug transporter proteins using a side population (SP) assay. Flow-cytometry-sorted fractions of luminal cancer cells implanted in immunocompromised mice generated a pre-clinical estrogen receptor alpha (ERα+) animal model with multiple tumorigenic fractions displaying differential expression of drug transporters and hormone receptors. Despite an abundance of estrogen receptor 1 (ESR1) gene transcripts, few fractions transitioned to the triple-negative breast cancer (TNBC) phenotype with a visible loss of ER protein expression and a distinct microRNA expression profile that is reportedly enriched in breast CSCs. The translation of this study has the potential to provide novel therapeutic miRNA-based targets to counter the dreaded subtype transitions and the failure of antihormonal therapies in the luminal breast cancer subtype.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Animals , Mice , Female , Breast Neoplasms/metabolism , MicroRNAs/genetics , Receptor, ErbB-2/metabolism , Trastuzumab/therapeutic use , Breast/metabolism , Phenotype , Receptors, Progesterone/genetics
2.
Microb Pathog ; 149: 104538, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32987116

ABSTRACT

Vibrio cholerae, causative agent of the water-borne disease cholera still threatens a large proportion of world's population. The major biotypes of the pathogen are classical and El Tor. There have been recent reports of variant V. cholerae strains circulating around the world. In the present study, the epidemiological status of V. cholerae strains circulating in the country over a decade was assessed. Also, a comprehensive analysis of the difference in pathogenicity between the different biotypes of V. cholerae strains was evaluated both in-vitro and in-vivo. The amount of CT produced by different biotypes of V. cholerae strains were analyzed by GM1 ELISA and the probable reasons for the difference in toxin production was discussed. MLST analysis grouped the isolates into a single Sequence Type (ST 69) whereas PFGE analysis clustered the isolates into ten different pulsotypes revealing molecular diversity. The circulating strains were identified to produce cholera toxin and CT mRNA intermediate to the classical and prototype El Tor strains. Also, the circulating strains were identified to possess four ToxR binding sequences. In-vivo pathogenicity analysis by rabbit ileal loop fluid accumulation assay revealed the Haitian variant strains to be more hyperemic than the prototype strains.


Subject(s)
Cholera , Vibrio cholerae O1 , Animals , Cholera/epidemiology , Cholera Toxin/genetics , Haiti , India/epidemiology , Multilocus Sequence Typing , Rabbits , Vibrio cholerae O1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...