Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Skelet Muscle ; 14(1): 1, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172960

ABSTRACT

Myofiber size regulation is critical in health, disease, and aging. MuSK (muscle-specific kinase) is a BMP (bone morphogenetic protein) co-receptor that promotes and shapes BMP signaling. MuSK is expressed at all neuromuscular junctions and is also present extrasynaptically in the mouse soleus, whose predominantly oxidative fiber composition is akin to that of human muscle. To investigate the role of the MuSK-BMP pathway in vivo, we generated mice lacking the BMP-binding MuSK Ig3 domain. These ∆Ig3-MuSK mice are viable and fertile with innervation levels comparable to wild type. In 3-month-old mice, myofibers are smaller in the slow soleus, but not in the fast tibialis anterior (TA). Transcriptomic analysis revealed soleus-selective decreases in RNA metabolism and protein synthesis pathways as well as dysregulation of IGF1-Akt-mTOR pathway components. Biochemical analysis showed that Akt-mTOR signaling is reduced in soleus but not TA. We propose that the MuSK-BMP pathway acts extrasynaptically to maintain myofiber size in slow muscle by promoting protein synthetic pathways including IGF1-Akt-mTOR signaling. These results reveal a novel mechanism for regulating myofiber size in slow muscle and introduce the MuSK-BMP pathway as a target for promoting muscle growth and combatting atrophy.


Subject(s)
Proto-Oncogene Proteins c-akt , Signal Transduction , Mice , Humans , Animals , Infant , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Muscle, Skeletal/metabolism , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism
2.
Sci Adv ; 9(27): eadd9984, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37418531

ABSTRACT

Macrophages are essential for skeletal muscle homeostasis, but how their dysregulation contributes to the development of fibrosis in muscle disease remains unclear. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages. We identified six clusters and unexpectedly found that none corresponded to traditional definitions of M1 or M2 macrophages. Rather, the predominant macrophage signature in dystrophic muscle was characterized by high expression of fibrotic factors, galectin-3 (gal-3) and osteopontin (Spp1). Spatial transcriptomics, computational inferences of intercellular communication, and in vitro assays indicated that macrophage-derived Spp1 regulates stromal progenitor differentiation. Gal-3+ macrophages were chronically activated in dystrophic muscle, and adoptive transfer assays showed that the gal-3+ phenotype was the dominant molecular program induced within the dystrophic milieu. Gal-3+ macrophages were also elevated in multiple human myopathies. These studies advance our understanding of macrophages in muscular dystrophy by defining their transcriptional programs and reveal Spp1 as a major regulator of macrophage and stromal progenitor interactions.


Subject(s)
Macrophages , Transcriptome , Mice , Animals , Humans , Mice, Inbred C57BL , Macrophages/metabolism , Muscle, Skeletal/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Fibrosis
3.
bioRxiv ; 2023 May 18.
Article in English | MEDLINE | ID: mdl-37292636

ABSTRACT

A central question in the biology of adult stem cells is elucidating the signaling pathways regulating their dynamics and function in diverse physiological and age-related contexts. Adult muscle stem cells (Satellite Cells; SCs) are generally quiescent but can activate and contribute to muscle homeostasis and repair. Here we tested the role of the MuSK-BMP pathway in regulating adult SC quiescence and myofiber size. We attenuated MuSK-BMP signaling by deletion of the BMP-binding MuSK Ig3 domain ('ΔIg3-MuSK') and studied the fast TA and EDL muscles. In germ line mutants at 3 months of age SC and myonuclei numbers as well as myofiber size were comparable in ΔIg3-MuSK and WT animals. However, in 5-month-old ΔIg3-MuSK animals SC density was decreased while myofiber size, myonuclear number and grip strength were increased - indicating that SCs had activated and productively fused into the myofibers over this interval. Notably, myonuclear domain size was conserved. Following injury, the mutant muscle fully regenerated with restoration of myofiber size and SC pool to WT levels, indicating that ΔIg3-MuSK SCs maintain full stem cell function. Conditional expression of ΔIg3-MuSK in adult SCs showed that the MuSK-BMP pathway regulates quiescence and myofiber size in a cell autonomous fashion. Transcriptomic analysis revealed that SCs from uninjured ΔIg3-MuSK mice exhibit signatures of activation, including elevated Notch and epigenetic signaling. We conclude that the MuSK-BMP pathway regulates SC quiescence and myofiber size in a cell autonomous, age-dependent manner. Targeting MuSK-BMP signaling in muscle stem cells thus emerges a therapeutic strategy for promoting muscle growth and function in the settings of injury, disease, and aging.

4.
bioRxiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37131694

ABSTRACT

The monocytic/macrophage system is essential for skeletal muscle homeostasis, but its dysregulation contributes to the pathogenesis of muscle degenerative disorders. Despite our increasing knowledge of the role of macrophages in degenerative disease, it still remains unclear how macrophages contribute to muscle fibrosis. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages. We identified six novel clusters. Unexpectedly, none corresponded to traditional definitions of M1 or M2 macrophage activation. Rather, the predominant macrophage signature in dystrophic muscle was characterized by high expression of fibrotic factors, galectin-3 and spp1. Spatial transcriptomics and computational inferences of intercellular communication indicated that spp1 regulates stromal progenitor and macrophage interactions during muscular dystrophy. Galectin-3 + macrophages were chronically activated in dystrophic muscle and adoptive transfer assays showed that the galectin-3 + phenotype was the dominant molecular program induced within the dystrophic milieu. Histological examination of human muscle biopsies revealed that galectin-3 + macrophages were also elevated in multiple myopathies. These studies advance our understanding of macrophages in muscular dystrophy by defining the transcriptional programs induced in muscle macrophages, and reveal spp1 as a major regulator of macrophage and stromal progenitor interactions.

5.
Res Sq ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36909467

ABSTRACT

Myofiber size regulation is critical in health, disease, and aging. MuSK (muscle-specific kinase) is a BMP (bone morphogenetic protein) co-receptor that promotes and shapes BMP signaling. MuSK is expressed at all neuromuscular junctions and is also present extrasynaptically in the slow soleus muscle. To investigate the role of the MuSK-BMP pathway in vivo we generated mice lacking the BMP-binding MuSK Ig3 domain. These ΔIg3-MuSKmice are viable and fertile with innervation levels comparable to wild type. In 3-month-old mice myofibers are smaller in the slow soleus, but not in the fast tibialis anterior (TA). Transcriptomic analysis revealed soleus-selective decreases in RNA metabolism and protein synthesis pathways as well as dysregulation of IGF1-Akt-mTOR pathway components. Biochemical analysis showed that Akt-mTOR signaling is reduced in soleus but not TA. We propose that the MuSK-BMP pathway acts extrasynaptically to maintain myofiber size in slow muscle by promoting protein synthetic pathways including IGF1-Akt-mTOR signaling. These results reveal a novel mechanism for regulating myofiber size in slow muscle and introduce the MuSK-BMP pathway as a target for promoting muscle growth and combatting atrophy.

6.
Cell Rep ; 32(1): 107855, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32640221

ABSTRACT

The liver harbors two main innate lymphoid cell (ILC) populations: conventional NK (cNK) cells and tissue-resident NK (trNK) cells. Using the MCMV model of infection, we find that, in contrast to liver cNK cells, trNK cells initially undergo a contraction phase followed by a recovery phase to homeostatic levels. The contraction is MCMV independent because a similar phenotype is observed following poly(I:C)/CpG or α-GalCer injection. The rapid contraction phase is due to apoptosis, whereas the recovery phase occurs via proliferation in situ. Interestingly, trNK cell apoptosis is not mediated by fratricide and not induced by liver lymphocytes or inflammatory cytokines. Instead, we find that trNK cell apoptosis is the consequence of an increased sensitivity to lactic acid. Mechanistic analysis indicates that trNK cell sensitivity to lactate is linked to impaired mitochondrial function. These findings underscore the distinctive properties of the liver-resident NK cell compartment.


Subject(s)
Inflammation/pathology , Killer Cells, Natural/pathology , Lactates/metabolism , Liver/pathology , Animals , Apoptosis , Cell Proliferation , Cellular Microenvironment , Cytokines/metabolism , Herpesviridae Infections/pathology , Herpesviridae Infections/virology , Kinetics , Mice, Inbred C57BL , Muromegalovirus/physiology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...