Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 63: 411-21, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27040235

ABSTRACT

Delivery of drugs to the brain via nasal route has been studied by many researchers. However, low residence time, mucociliary clearance and enzymatically active environment of nasal cavity pose many challenges to successful nasal delivery of drugs. We aim to deliver methotrexate by designing thermosensitive nanodispersion exhibiting enhanced residence time in nasal cavity and bypassing the blood brain barrier (BBB). PLA nanoparticles were developed using solvent evaporation technique. The developed nanoparticles were further dispersed in prepared thermosensitive vehicle of poloxamer 188 and Carbopol 934 to impart the property of increased residence time. The formulated nanoparticles demonstrated no interaction with the simulated nasal fluids (SNF), mucin, serum proteins and erythrocytes which demonstrate the safety of developed formulation for nasal administration. The penetration property of nanoparticles though the nasal mucosa was higher than the pure drug due to low mucociliary clearance. The developed nanoparticles diffused though the membrane pores and rapidly distributed into the brain portions compared to the pure drug. There was detectable and quantifiable amount of drug seen in the brain as demonstrated by in vivo brain distribution studies with considerably low amount of drug deposition in the lungs. The pharmacokinetic parameters demonstrated the enhancement in circulation half life, area under curve (AUC) and Cmax of the drug when administered intranasal in encapsulated form. Thus, the thermosensitive nanodispersions are surely promising delivery systems for delivering anticancer agents though the nasal route for potential treatment of brain tumors.


Subject(s)
Drug Carriers/chemistry , Nanoparticles/chemistry , Polyesters/chemistry , Administration, Intranasal , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Blood-Brain Barrier/drug effects , Brain/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Drug Compounding , Erythrocytes/cytology , Erythrocytes/drug effects , Erythrocytes/metabolism , Half-Life , Hemolysis/drug effects , Humans , Methotrexate/administration & dosage , Methotrexate/chemistry , Methotrexate/pharmacokinetics , Methotrexate/pharmacology , Nasal Mucosa/drug effects , Particle Size , Poloxamer/chemistry , Rats , Rats, Wistar
2.
Saudi Pharm J ; 23(4): 341-51, 2015 Sep.
Article in English | MEDLINE | ID: mdl-27134534

ABSTRACT

Nanoparticles are being increasingly used in the field of cancer treatment due to their unique properties and advantages. The aim of the present research work was to prepare and characterize a polymeric albumin nanosystem for Cisplatin and evaluate its in-vitro efficacy against B16F10 melanoma. The developed nanoparticles were almost spherical in shape with a particle size in the range of 150-300 nm, low polydispersity values and about 80% drug entrapment efficiency. Albumin nanocarriers sustained the release of Cisplatin for more than 48 h, suggesting the reduction in dosing schedule for this drug. The results from in-vitro cell line studies indicated the dose dependent cytotoxic potential of drug loaded albumin nanoparticles, their potential to inhibit cell proliferation and induce morphological changes. In addition, these nanoparticles exhibited superiority to Cisplatin in hampering the cell migration. Developed nanoparticles caused cell cycle arrest along with time and concentration dependent cellular uptake in B16F10 cell line. These results signify that the prepared Cisplatin albumin nanoparticles could serve as a promising approach for B16F10 melanoma treatment.

3.
Biomed Pharmacother ; 68(2): 231-40, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24560352

ABSTRACT

Poor solubility of etoposide and associated poor bioavailability of the drug was circumvented by developing solid lipid nanocarrier system. The objective of the research work was to prepare etoposide loaded solid lipid nanoparticles (SLN) for improved efficacy and therapy of metastasized cancers. Entrapment of drug into nanoparticulate system modifies the pharmacokinetic and biodistribution profile of the drug with improved therapeutic efficacy. Solid lipid nanoparticles of various triglycerides were prepared using hot homogenization technique. Further, the process and formulation parameters viz. homogenization cycle and pressure, type of lipid were optimized. Developed nanoparticles were characterised for particle size, in vitro dissolution studies, DSC thermogram, surface morphology and cytotoxicity assay. Pharmacokinetic and biodistribution study were performed to assess the distribution of the drug in vivo. Modulation of the therapeutic activity of the drug was studied by performing antimetastatic activity on a B16F10 melanoma mouse model. The obtained results exhibited suitability of trimysristin for fabrication of nanoparticles. Characterisation of nanoparticles depicted formation of homogenous, spherical particles entrapping approximately 50% of the drug. The results for the performed MTT assay suggested that the developed nanoparticles exhibited cytotoxicity in a time- and concentration-dependent fashion. These findings concord with the results of the in vitro dissolution profile. Pharmacokinetic parameters demonstrated increase in area under curve (AUC), t1/2 and mean residence time (MRT) for drug in plasma. Further there is enhancement in the ratio of the drug that reaches to the highly perfused organs (upon encapsulation into solid lipid nanoparticles). Generally, cancer cells metastasized through the blood or lymphatic system. Accumulation of the drug in the highly perfused organ suggests suitability of the developed nanoparticles for targeting metastasized tumors. This was proved by the findings of the in vivo B16F10 mouse melanoma model. Improvement in the tumoricidal activity and survival rate of the animals substantiates the application of nanoparticles for improved therapeutic activity of etoposide.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Drug Carriers/chemistry , Etoposide/therapeutic use , Lung Neoplasms/drug therapy , Melanoma, Experimental/drug therapy , Nanoparticles/chemistry , Triglycerides/chemistry , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacokinetics , Cell Line, Tumor , Cell Survival/drug effects , Drug Compounding , Etoposide/administration & dosage , Etoposide/chemistry , Etoposide/pharmacokinetics , Kaplan-Meier Estimate , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Melanoma, Experimental/metabolism , Melanoma, Experimental/secondary , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Particle Size , Solubility , Surface Properties , Survival Analysis , Tissue Distribution
4.
Daru ; 22(1): 18, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24410831

ABSTRACT

BACKGROUND: Nanotechnology has received great attention since a decade for the treatment of different varieties of cancer. However, there is a limited data available on the cytotoxic potential of Temozolomide (TMZ) formulations. In the current research work, an attempt has been made to understand the anti-metastatic effect of the drug after loading into PLGA nanoparticles against C6 glioma cells.Nanoparticles were prepared using solvent diffusion method and were characterized for size and morphology. Diffusion of the drug from the nanoparticles was studied by dialysis method. The designed nanoparticles were also assessed for cellular uptake using confocal microscopy and flow cytometry. RESULTS: PLGA nanoparticles caused a sustained release of the drug and showed a higher cellular uptake. The drug formulations also affected the cellular proliferation and motility. CONCLUSION: PLGA coated nanoparticles prolong the activity of the loaded drug while retaining the anti-metastatic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...