Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Diabetes Sci Technol ; : 19322968231153419, 2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36772835

ABSTRACT

BACKGROUND: The objective of this work is to develop a highly miniaturized, low-power, biosensing platform for continuous glucose monitoring (CGM). This platform is based on an application-specific integrated circuit (ASIC) chip that interfaces with an amperometric glucose-sensing element. To reduce both size and power requirements, this custom ASIC chip was implemented using 65-nm complementary metal oxide semiconductor (CMOS) technology node. Interfacing this chip to a frequency-counting microprocessor with storage capabilities, a miniaturized transcutaneous CGM system can be constructed for small laboratory animals, with long battery life. METHOD: A 0.45 mm × 1.12 mm custom ASIC chip was first designed and implemented using the Taiwan Semiconductor Manufacturing Company (TSMC) 65-nm CMOS technology node. This ASIC chip was then interfaced with a multi-layer amperometric glucose-sensing element and a frequency-counting microprocessor with storage capabilities. Variation in glucose levels generates a linear increase in frequency response of this ASIC chip. In vivo experiments were conducted in healthy Sprague Dawley rats. RESULTS: This highly miniaturized, 65-nm custom ASIC chip has an overall power consumption of circa 36 µW. In vitro testing shows that this ASIC chip produces a linear (R2 = 99.5) frequency response to varying glucose levels (from 2 to 25 mM), with a sensitivity of 1278 Hz/mM. In vivo testing in unrestrained healthy rats demonstrated long-term CGM (six days/per charge) with rapid glucose response to glycemic variations induced by isoflurane anesthesia and tail vein injection. CONCLUSIONS: The miniature footprint of the biosensor platform, together with its low-power consumption, renders this CMOS ASIC chip a versatile platform for a variety of highly miniaturized devices, intended to improve the quality of life of patients with type 1 and type 2 diabetes.

2.
J Diabetes Sci Technol ; 15(3): 646-654, 2021 05.
Article in English | MEDLINE | ID: mdl-31786953

ABSTRACT

BACKGROUND: An anti-inflammatory drug-loaded composite coating (dexamethasone-loaded poly (lactic-co-glycolic acid) [PLGA] microspheres/polyvinyl alcohol [PVA] hydrogel) was previously developed to counter the foreign body reaction to a fully implantable continuous glucose monitoring biosensor. The long-term sensor functionality was ensured in the presence of the drug-loaded composite coating thus facilitating better diabetes control and management. In order to advance such a drug-device combination product toward clinical testing, addressing sterilization remains a key step due to the heterogeneity of the product components. The main objective of this research was to investigate the effect of two terminal sterilization techniques: gamma radiation and ethylene oxide (EO) on the stability of the anti-inflammatory coatings as well as retention of the glucose sensing ability of the implantable sensor. METHOD: The composite coatings, their individual components, and the glucose-sensing elements of the biosensor were subjected to low-temperature gamma radiation and EO cycles. Detailed characterization was conducted on all components before and after sterilization. RESULTS: Exposure to gamma radiation affected dexamethasone crystallinity and glucose response linearity of the sensing element, whereas physical aging of microspheres in composite coatings was observed poststerilization with EO. Despite these effects, dexamethasone drug release from coatings was not significantly affected by either technique. CONCLUSION: The research findings indicate that both sterilization techniques are feasible for the sterilization of the dexamethasone-loaded PLGA microspheres/PVA hydrogel composite coatings, while EO was preferred for the sterilization of the glucose-sensing element of the biosensor.


Subject(s)
Biosensing Techniques , Pharmaceutical Preparations , Blood Glucose , Blood Glucose Self-Monitoring , Dexamethasone , Glucose , Humans , Lactic Acid , Microspheres , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer , Sterilization
3.
Biomed Microdevices ; 15(1): 151-60, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22992979

ABSTRACT

Implantable sensors for continuous glucose monitoring hold great potential for optimal diabetes management. This is often undermined by a variety of issues associated with: (1) negative tissue response; (2) poor sensor performance; and (3) lack of device miniaturization needed to reduce implantation trauma. Herein, we report our initial results towards constructing an implantable device that simultaneously address all three aforementioned issues. In terms of device miniaturization, a highly miniaturized CMOS (complementary metal-oxide-semiconductor) potentiostat and signal processing unit was employed (with a combined area of 0.665 mm(2)). The signal processing unit converts the current generated by a transcutaneous, Clark-type amperometric sensor to output frequency in a linear fashion. The Clark-type amperometric sensor employs stratification of five functional layers to attain a well-balanced mass transfer which in turn yields a linear sensor response from 0 to 25 mM of glucose concentration, well beyond the physiologically observed (2 to 22 mM) range. In addition, it is coated with a thick polyvinyl alcohol (PVA) hydrogel with embedded poly(lactic-co-glycolic acid) (PLGA) microspheres intended to provide continuous, localized delivery of dexamethasone to suppress inflammation and fibrosis. In vivo evaluation in rat model has shown that the transcutaneous sensor system reproducibly tracks repeated glycemic events. Clarke's error grid analysis on the as-obtained glycemic data has indicated that all of the measured glucose readings fell in the desired Zones A & B and none fell in the erroneous Zones C, D and E. Such reproducible operation of the transcutaneous sensor system, together with low power (140 µW) consumption and capability for current-to-frequency conversion renders this a versatile platform for continuous glucose monitoring and other biomedical sensing devices.


Subject(s)
Blood Glucose Self-Monitoring/instrumentation , Glucose/analysis , Miniaturization/instrumentation , Prostheses and Implants , Skin , Animals , Biosensing Techniques , Electrochemistry , Lactic Acid/chemistry , Male , Metals/chemistry , Oxides/chemistry , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Polyvinyl Alcohol/chemistry , Rats , Rats, Sprague-Dawley , Semiconductors
4.
Sensors (Basel) ; 12(10): 13402-16, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23202001

ABSTRACT

The performance of implantable electrochemical glucose sensors is highly dependent on the flux-limiting (glucose, H(2)O(2), O(2)) properties of their outer membranes. A careful understanding of the diffusion profiles of the participating species throughout the sensor architecture (enzyme and membrane layer) plays a crucial role in designing a robust sensor for both in vitro and in vivo operation. This paper reports the results from the mathematical modeling of Clark's first generation amperometric glucose sensor coated with layer-by-layer assembled outer membranes in order to obtain and compare the diffusion profiles of various participating species and their effect on sensor performance. Devices coated with highly glucose permeable (HAs/Fe(3+)) membranes were compared with devices coated with PSS/PDDA membranes, which have an order of magnitude lower permeability. The simulation showed that the low glucose permeable membrane (PSS/PDDA) sensors exhibited a 27% higher amperometric response than the high glucose permeable (HAs/Fe(3+)) sensors. Upon closer inspection of H(2)O(2)diffusion profiles, this non-typical higher response from PSS/PDDA is not due to either a larger glucose flux or comparatively larger O(2) concentrations within the sensor geometry, but rather is attributed to a 48% higher H(2)O(2) concentration in the glucose oxidase enzyme layer of PSS/PDDA coated sensors as compared to HAs/Fe(3+) coated ones. These simulated results corroborate our experimental findings reported previously. The high concentration of H(2)O(2) in the PSS/PDDA coated sensors is due to the low permeability of H(2)O(2) through the PSS/PDDA membrane, which also led to an undesired increase in sensor response time. Additionally, it was found that this phenomenon occurs for all enzyme thicknesses investigated (15, 20 and 25 nm), signifying the need for a holistic approach in designing outer membranes for amperometric biosensors.


Subject(s)
Biosensing Techniques/instrumentation , Coated Materials, Biocompatible/chemistry , Glucose/analysis , Models, Theoretical , Electrodes, Implanted , Humans , Infusion Pumps, Implantable , Insulin Infusion Systems , Membranes, Artificial
5.
J Diabetes Sci Technol ; 5(5): 1044-51, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-22027296

ABSTRACT

OBJECTIVE: Development of electrochemical sensors for continuous glucose monitoring is currently hindered by a variety of problems associated with low selectivity, low sensitivity, narrow linearities, delayed response times, hysteresis, biofouling, and tissue inflammation. We present an optimized sensor architecture based on layer stratification, which provides solutions that help address the aforementioned issues. METHOD: The working electrode of the electrochemical glucose sensors is sequentially coated with five layers containing: (1) electropolymerized polyphenol (PPh), (2) glutaraldehyde-immobilized glucose oxidase (GOx) enzyme, (3) dip-coated polyurethane (PU), (4) glutaraldehyde-immobilized catalase enzyme, and (5) a physically cross linked polyvinyl alcohol (PVA) hydrogel membrane. The response of these sensors to glucose and electroactive interference agents (i.e., acetaminophen) was investigated following application of the various layers. Sensor hysteresis (i.e., the difference in current for a particular glucose concentration during ascending and descending cycles after 200 s) was also investigated. RESULTS: The inner PPh membrane improved sensor selectivity via elimination of electrochemical interferences, while the third PU layer afforded high linearity by decreasing the glucose-to-O2 ratio. The fourth catalase layer improved sensor response time and eliminated hysteresis through active withdrawal of GOx-generated H2O2 from the inner sensory compartments. The outer PVA hydrogel provided mechanical support and a continuous pathway for diffusion of various participating species while acting as a host matrix for drug-eluting microspheres. CONCLUSIONS: Optimal sensor performance has been achieved through a five-layer stratification, where each coating layer works complementarily with the others. The versatility of the sensor design together with the ease of fabrication renders it a powerful tool for continuous glucose monitoring.


Subject(s)
Biosensing Techniques/instrumentation , Glucose/analysis , Blood Glucose Self-Monitoring/instrumentation , Electrodes , Equipment Design , Glucose Oxidase
6.
J Diabetes Sci Technol ; 4(6): 1540-62, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-21129353

ABSTRACT

Devices for continuous glucose monitoring (CGM) are currently a major focus of research in the area of diabetes management. It is envisioned that such devices will have the ability to alert a diabetes patient (or the parent or medical care giver of a diabetes patient) of impending hypoglycemic/hyperglycemic events and thereby enable the patient to avoid extreme hypoglycemic/hyperglycemic excursions as well as minimize deviations outside the normal glucose range, thus preventing both life-threatening events and the debilitating complications associated with diabetes. It is anticipated that CGM devices will utilize constant feedback of analytical information from a glucose sensor to activate an insulin delivery pump, thereby ultimately realizing the concept of an artificial pancreas. Depending on whether the CGM device penetrates/breaks the skin and/or the sample is measured extracorporeally, these devices can be categorized as totally invasive, minimally invasive, and noninvasive. In addition, CGM devices are further classified according to the transduction mechanisms used for glucose sensing (i.e., electrochemical, optical, and piezoelectric). However, at present, most of these technologies are plagued by a variety of issues that affect their accuracy and long-term performance. This article presents a critical comparison of existing CGM technologies, highlighting critical issues of device accuracy, foreign body response, calibration, and miniaturization. An outlook on future developments with an emphasis on long-term reliability and performance is also presented.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus/diagnosis , Monitoring, Ambulatory , Biomarkers/blood , Diabetes Mellitus/blood , Diabetes Mellitus/drug therapy , Equipment Design , Forecasting , Humans , Insulin Infusion Systems , Miniaturization , Monitoring, Ambulatory/instrumentation , Monitoring, Ambulatory/methods , Monitoring, Ambulatory/trends , Predictive Value of Tests , Reproducibility of Results , Signal Processing, Computer-Assisted , Time Factors
7.
Biosens Bioelectron ; 25(7): 1553-65, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20042326

ABSTRACT

The development of implantable biosensors for continuous monitoring of metabolites is an area of sustained scientific and technological interests. On the other hand, nanotechnology, a discipline which deals with the properties of materials at the nanoscale, is developing as a potent tool to enhance the performance of these biosensors. This article reviews the current state of implantable biosensors, highlighting the synergy between nanotechnology and sensor performance. Emphasis is placed on the electrochemical method of detection in light of its widespread usage and substantial nanotechnology based improvements in various aspects of electrochemical biosensor performance. Finally, issues regarding toxicity and biocompatibility of nanomaterials, along with future prospects for the application of nanotechnology in implantable biosensors, are discussed.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/trends , Nanotechnology/instrumentation , Nanotechnology/trends , Prostheses and Implants/trends , Transducers/trends , Equipment Design/trends , Forecasting , Systems Integration
8.
J Diabetes Sci Technol ; 3(4): 863-74, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-20144336

ABSTRACT

BACKGROUND: High linearities, sensitivities, and low oxygen dependence constitute prime requisites for electrochemical glucose sensors. However, for implantable sensors the need to control tissue inflammation requires the use outer membranes that permit inward analyte diffusion while continuously releasing anti-inflammatory drugs and other tissue response-modifying (TRM) agents. We have shown previously that while outer membranes based on layer-by-layer (LBL) assembly enhance linearity, poly(vinyl alcohol)(PVA) hydrogels loaded with TRM-containing microspheres enable a significant reduction in tissue inflammation. This article discusses amperometric performance of glucose sensors coated with stacked LBL/PVA hydrogel outer membranes. METHODS: Sensors were fabricated by immobilizing glucose oxidase enzyme on a 50-microm platinum wire followed by deposition of stacked LBL/PVA hydrogel outer membranes. The sensor response to various glucose concentrations was determined by applying 0.7 V vs an Ag/AgCl reference electrode in phosphate-buffered saline (37 degrees C). Michaelis-Menten analysis was performed to quantify sensor performance in terms of linearity (K(m,glu)(app)) and oxygen dependence (K(m,O(2))(app)/[Glucose]). RESULTS: When overlaid onto LBL-assembled outer membranes, PVA hydrogels improved sensor linearity by 60% from 10 to 16 mM of glucose and resulted in a twofold decrease in oxygen dependence. CONCLUSIONS: Enhancement in the performance of a PVA-coated sensor is attributed to the oxygen-storing capability of PVA hydrogel due to the formation of hydrophobic domains during its freezing and thawing employed to physical cross-link the PVA. Such membranes with the capability to release TRMs continuously while storing oxygen constitute a major improvement over current outer membrane technologies.


Subject(s)
Biosensing Techniques , Glucose/analysis , Hydrogels , Biocompatible Materials , Infusion Pumps, Implantable , Insulin Infusion Systems , Microspheres , Polyvinyl Alcohol/chemistry
9.
J Diabetes Sci Technol ; 1(2): 193-200, 2007 Mar.
Article in English | MEDLINE | ID: mdl-19888406

ABSTRACT

BACKGROUND: The performance of implantable glucose sensors is closely related to the behavior of the outer membrane. Such membranes govern the diffusion characteristics of glucose and, correspondingly, the sensitivity of the sensors. This manuscript discusses the selection of various membrane materials and their effect on the device response. METHODS: Sensors were fabricated utilizing a 50-microm platinum wire followed by immobilization of the glucose oxidase (GO(X)) enzyme. Sequential adsorption of various ionic species via a layer-by-layer process created devices coated with bilayers of humic acids/ferric cations (HAs/Fe(3+)), humic acids/poly(diallyldimethylammonium chloride) (HAs/PDDA), and poly(styrene sulfonate)/poly(diallyldimethylammonium chloride) (PSS/PDDA). The in vitro amperometric response of the sensors was determined at 0.7 V vs an Ag/AgCl reference electrode in phosphate-buffered saline (37 degrees C) for various glucose concentrations. The diffusion coefficients of glucose and hydrogen peroxide (H(2)O(2)) through these membranes were calculated and analyzed. RESULTS: Outer membranes based on the sequential deposition of bilayers of HAs/Fe(3+), HAs/PDDA, and PSS/PDDA were grown successfully on immobilized layers of GO(X). The amperometric response and reversibility upon changing the in vitro concentration of glucose were investigated. CONCLUSIONS: Through alteration of the number of bilayers of the outer membrane, it was possible to modulate the diffusion of glucose toward the sensor as a result of its flux-limiting characteristics. Semipermeable membranes based on five HAs/Fe(3+) bilayers exhibited a superior behavior with a minimum hysterisis response to glucose cycling and a lesser current saturation at hyperglycemic glucose concentrations because of a more balanced inward diffusion of glucose and outward diffusion of H(2)O(2).

SELECTION OF CITATIONS
SEARCH DETAIL
...