Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Trace Elem Res ; 184(1): 206-213, 2018 Jul.
Article in English | MEDLINE | ID: mdl-28988373

ABSTRACT

The present study was designed to investigate the effects of lithium treatment on red blood cells which were given arsenic exposure. Long-term lithium therapy is being extensively used for the treatment of bipolar disorders. Arsenic is a group I carcinogen and a major toxic pollutant in drinking water that affects millions of people worldwide. Male SD rats were segregated into four groups, viz. normal control, lithium treated, arsenic treated, and lithium + arsenic treated. Lithium was supplemented as lithium carbonate at a dose level of 1.1 g/kg diet for a period of 8 weeks. Arsenic was given in the form of sodium arsenite at a dose level of 100 ppm in drinking water, ad libitum, for the same period. Lysates of red blood cells were used to investigate the effects of lithium and arsenic treatments on anti-oxidant enzymes, reduced glutathione (GSH), and lipid peroxidation (LPO) levels. Various hematological parameters, activities of Na+ K+ ATPase and delta-aminolevulinic acid dehydratase (δ-ALAD) were also assessed. A significant reduction was observed in the activities of antioxidant enzymes, GSH levels, total erythrocyte counts, Na+ K+ ATPase, and ALAD enzyme activities in lysates of red blood cells when exposed either to lithium or arsenic. In addition, a significant increase in the levels of malondialdehyde (MDA), lymphocytes, neutrophils, and total leukocytes was also observed following lithium as well as arsenic treatments. However, when arsenic-treated rats were subjected to lithium treatment, a pronounced alteration was noticed in all the above parameters. Therefore, we conclude that lithium supplementation to the arsenic-treated rats enhances the adverse effects on red blood cells and therefore use of lithium may not be medicated to patients who are vulnerable to arsenic exposure through drinking water. It can also be inferred that adverse effects of lithium therapy may get aggravated in patients thriving in the arsenic-contaminated area.


Subject(s)
Arsenic/toxicity , Erythrocytes/drug effects , Erythrocytes/metabolism , Lithium/toxicity , Animals , Antioxidants/metabolism , Arsenites/toxicity , Glutathione/metabolism , Lipid Peroxidation/drug effects , Male , Oxidative Stress/drug effects , Porphobilinogen Synthase/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Sodium Compounds/toxicity
2.
Cancer Biother Radiopharm ; 29(8): 310-6, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25226565

ABSTRACT

This study was conducted to investigate the role of curcumin and zinc on the biokinetics and biodistribution of (65)Zn during colon carcinogenesis. Male wistar rats were divided into five groups, namely normal control, 1,2-dimethylhydrazine (DMH) treated, DMH + curcumin treated, DMH + zinc treated, and DMH + curcumin + zinc treated. Weekly subcutaneous injections of DMH (30 mg/kg body weight) for 16 weeks initiated colon carcinogenesis. Curcumin (100 mg/kg body weight orally) and ZnSO4 (227 mg/L in drinking water) were supplemented for 16 weeks. This study revealed a significant depression in the fast (Tb1) and slow component (Tb2) of biological half-life of (65)Zn in the whole body of DMH-treated rats, whereas liver showed a significant elevation in these components. Further, DMH treatment showed a significant increase in the uptake values of (65)Zn in colon, small intestine, and kidneys. Subcellular distribution depicted a significant increase in (65)Zn uptake values in mitochondrial, microsomal, and postmicrosomal fractions of colon. However, curcumin and zinc supplementation when given separately or in combination reversed the trends and restored the uptake values close to normal range. Our study concludes that curcumin and zinc supplementation during colon carcinogenesis shall prove to be efficacious in regulating the altered zinc metabolism.


Subject(s)
Colonic Neoplasms/metabolism , Curcumin/pharmacology , Zinc Radioisotopes/pharmacokinetics , Zinc/pharmacology , 1,2-Dimethylhydrazine , Animals , Carcinogenesis , Carcinogens , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...