Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Alzheimers Dement ; 20(1): 549-562, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37740924

ABSTRACT

INTRODUCTION: The National Institute on Aging - Alzheimer's Association (NIA-AA) ATN research framework proposes to use biomarkers for amyloid (A), tau (T), and neurodegeneration (N) to stage individuals with AD pathological features and track changes longitudinally. The overall aim was to utilize this framework to characterize pre-mortem ATN status longitudinally in a clinically diagnosed cohort of dementia with Lewy bodies (DLB) and to correlate it with the post mortem diagnosis. METHODS: The cohort was subtyped by cerebrospinal fluid (CSF) ATN category. A subcohort had longitudinal data, and a subgroup was neuropathologically evaluated. RESULTS: We observed a significant difference in Aß42/40 after 12 months in the A+T- group. Post mortem neuropathologic analyses indicated that most of the p-Tau 181 positive (T+) cases also had a high Braak stage. DISCUSSION: This suggests that DLB patients who are A+ but T- may need to be monitored to determine whether they remain A+ or ever progress to T positivity. HIGHLIGHTS: Some A+T- DLB subjects transition from A+ to negative after 12-months. Clinically diagnosed DLB with LBP-AD (A+T+) maintain their positivity. Clinically diagnosed DLB with LBP-AD (A+T+) maintain their positivity. Monitoring of the A+T- sub-type of DLB may be necessary.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Lewy Body Disease/diagnosis , Lewy Body Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid
2.
Clin Genet ; 104(2): 198-209, 2023 08.
Article in English | MEDLINE | ID: mdl-37198960

ABSTRACT

Phelan-McDermid Syndrome (PMS) is caused by deletions at chromosome 22q13.3 or pathogenic/likely pathogenic SHANK3 variants. The clinical presentation is extremely variable and includes global developmental delay/intellectual disability (ID), seizures, neonatal hypotonia, and sleep disturbances, among others. This study investigated the prevalence of sleep disturbances, and the genetic and metabolic features associated with them, in a cohort of 56 individuals with PMS. Sleep data were collected via standardized observer/caregiver questionnaires, while genetic data from array-CGH and sequencing of 9 candidate genes within the 22q13.3 region, and metabolic profiling utilized the Biolog Phenotype Mammalian MicroArray plates. Sleep disturbances were present in 64.3% of individuals with PMS, with the most common problem being waking during the night (39%). Sleep disturbances were more prevalent in individuals with a SHANK3 pathogenic variant (89%) compared to subjects with 22q13.3 deletions of any size (59.6%). Distinct metabolic profiles for individuals with PMS with and without sleep disturbances were also identified. These data are helpful information for recognizing and managing sleep disturbances in individuals with PMS, outlining the main candidate gene for this neurological manifestation, and highlighting potential biomarkers for early identification of at-risk subjects and molecular targets for novel treatment approaches.


Subject(s)
Chromosome Disorders , Sleep Wake Disorders , Animals , Humans , Chromosome Disorders/genetics , Chromosome Deletion , Phenotype , Sleep/genetics , Sleep Wake Disorders/complications , Sleep Wake Disorders/genetics , Chromosomes, Human, Pair 22/genetics , Mammals/genetics
3.
Clin Genet ; 101(1): 87-100, 2022 01.
Article in English | MEDLINE | ID: mdl-34664257

ABSTRACT

Phelan-McDermid syndrome (PMS) (OMIM*606232) is a rare genetic disorder characterized by intellectual disability, autistic features, speech delay, minor dysmorphia, and seizures. This study was conducted to investigate the prevalence of seizures and the association with genetic and metabolic features since there has been little research related to seizures in PMS. For 57 individuals, seizure data was collected from caregiver interviews, genetic data from existing cytogenetic records and Sanger sequencing for nine 22q13 genes, and metabolic profiling from the Phenotype Mammalian MicroArray (PM-M) developed by Biolog. Results showed that 46% of individuals had seizures with the most common type being absence and grand-mal seizures. Seizures were most prevalent in individuals with pathogenic SHANK3 mutations (70%), those with deletion sizes >4 Mb (16%), and those with deletion sizes <4 Mb (71%) suggesting involvement of genes in addition to SHANK3. Additionally, a 3 Mb genomic region on 22q13.31 containing the gene TBC1D22A, was found to be significantly associated with seizure prevalence. A distinct metabolic profile was identified for individuals with PMS with seizures and suggested among other features a disrupted utilization of main energy sources using Biolog plates. The results of this study will be helpful for clinicians and families in anticipating seizures in these children and for researchers to identify candidate genes for the seizure phenotype.


Subject(s)
Chromosome Disorders/genetics , Chromosome Disorders/metabolism , Genetic Association Studies , Genetic Predisposition to Disease , Genomics , Metabolomics , Seizures/etiology , Adolescent , Adult , Child , Child, Preschool , Chromosome Deletion , Chromosome Disorders/diagnosis , Chromosomes, Human, Pair 22/genetics , Chromosomes, Human, Pair 22/metabolism , Female , Genomics/methods , Humans , Male , Metabolomics/methods , Middle Aged , Seizures/diagnosis , Young Adult
4.
PLoS One ; 16(7): e0253859, 2021.
Article in English | MEDLINE | ID: mdl-34228749

ABSTRACT

Phelan-McDermid syndrome (PMS) is a multi-system disorder characterized by significant variability in clinical presentation. The genetic etiology is also variable with differing sizes of deletions in the chromosome 22q13 region and types of genetic abnormalities (e.g., terminal or interstitial deletions, translocations, ring chromosomes, or SHANK3 variants). Position effects have been shown to affect gene expression and function and play a role in the clinical presentation of various genetic conditions. This study employed a topologically associating domain (TAD) analysis approach to investigate position effects of chromosomal rearrangements on selected candidate genes mapped to 22q13 in 81 individuals with PMS. Data collected were correlated with clinical information from these individuals and with expression and metabolic profiles of lymphoblastoid cells from selected cases. The data confirmed TAD predictions for genes encompassed in the deletions and the clinical and molecular data indicated clear differences among individuals with different 22q13 deletion sizes. The results of the study indicate a positive correlation between deletion size and phenotype severity in PMS and provide evidence of the contribution of other genes to the clinical variability in this developmental disorder by reduced gene expression and altered metabolomics.


Subject(s)
Chromosome Disorders/genetics , Gene Rearrangement , Adolescent , Child , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 22/genetics , Cohort Studies , Female , Genetic Variation , Humans , Male
5.
Eur J Med Genet ; 63(11): 104042, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32822873

ABSTRACT

Phelan-McDermid syndrome (PMS) is a rare neurodevelopmental disorder caused by rearrangements on chromosome 22q13.3 or sequence variants in SHANK3. Individuals with PMS caused by a 22q terminal deletion and a ring chromosome are at increased risk for Neurofibromatosis type 2 (NF2). However, the prevalence of NF2 in individuals with PMS and a r (22) is unknown. Individuals with PMS and a r (22) chromosome evaluated at the Greenwood Genetic Center (GGC) or by international collaborators, or identified through the PMS International Registry (PMSIR) were contacted and participated in a clinical questionnaire. Forty-four families completed the questionnaire and consented for the study. Of the individuals with a r (22), 7 (16%) carried a diagnosis of NF2. The average age of diagnosis of r (22) was 18 years old in individuals with NF2 and three years old in individuals without NF2 (p-value <0.001). Clinical findings were similar among all individuals in our sample with the exception of hearing loss, present in 57% of individuals with NF2 and 8% of individuals without NF2 (p-value <0.01). This is the largest clinical report of individuals with PMS and a r (22) chromosome. We show a diagnosis of NF2 in individuals with r (22) is not uncommon and may be under ascertained. Moreover, the presentation of NF2 in this cohort is variable and lifelong routine screening for features of NF2 in this population should be considered.


Subject(s)
Chromosome Disorders/genetics , Neurofibromatosis 2/genetics , Adult , Child , Chromosome Deletion , Chromosome Disorders/diagnostic imaging , Chromosome Disorders/pathology , Chromosomes, Human, Pair 22/genetics , Genetic Testing , Humans , Magnetic Resonance Imaging , Middle Aged , Neurofibromatosis 2/diagnostic imaging , Neurofibromatosis 2/pathology , Neurofibromin 2/genetics , Ring Chromosomes
SELECTION OF CITATIONS
SEARCH DETAIL
...