Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 12(2)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672467

ABSTRACT

Functionalized carbon nanotube (FCNT) and Manganese Oxide (MnO2) nanoflower hybrid material was synthesized using hydrothermal technique as a promising electrode material for supercapacitor applications. The morphological investigation revealed the formation of 'nanoflower' like structure of MnO2 connected with FCNT, thus paving an easy path for the conduction of electrons during the electrochemical mechanism. A significant improvement in capacitance properties was observed in the hybrid material, in which carbon nanotube acts as a conducting cylindrical path, while the major role of MnO2 was to store the charge, acting as an electrolyte reservoir leading to an overall improved electrochemical performance. The full cell electrochemical analysis of FCNT-MnO2 hybrid using 3 M potassium hydroxide (KOH) electrolyte indicated a specific capacitance of 359.53 F g-1, specific energy of 49.93 Wh kg-1 and maximum specific power of 898.84 W kg-1 at 5 mV s-1. The results show promise for the future of supercapacitor development based on hybrid electrode materials, where high specific energy can be achieved along with high specific power and long cycle life.

3.
Ann N Y Acad Sci ; 983: 71-83, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12724213

ABSTRACT

Epigenetics is the study of mitotically heritable changes in gene expression without any changes in the primary DNA sequence. The major step in epigenetic gene regulation is gene inactivation by hypermethylation of CpG islands located in the promoter region. Specific enzymes and methylated DNA binding proteins play a major role in causing reduced expression of tumor suppressor genes, resulting in tumor formation and its progression. Prevention approaches are needed to avoid tumor formation. One approach to inhibiting inactivation of tumor suppressor genes is to use chemical agents such as 5-azacytidine to prevent hypermethylation of DNA. Increased understanding of the mechanism of epigenetic silencing and the identification of additional molecular mechanisms (e.g., histone methylases) that may be targeted by pharmaceutical interventions may lead to more preventive strategies. The current status of the epigenetic regulation of tumor suppressor genes is discussed in this review article.


Subject(s)
DNA Methylation , Genes, Tumor Suppressor , Histone-Lysine N-Methyltransferase , Histone Deacetylases/metabolism , Histone Methyltransferases , Humans , Methyltransferases/metabolism , Promoter Regions, Genetic , Protein Methyltransferases
SELECTION OF CITATIONS
SEARCH DETAIL
...