Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3823, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714643

ABSTRACT

The CRISPR-Cas12a system is more advantageous than the widely used CRISPR-Cas9 system in terms of specificity and multiplexibility. However, its on-target editing efficiency is typically much lower than that of the CRISPR-Cas9 system. Here we improved its on-target editing efficiency by simply incorporating 2-aminoadenine (base Z, which alters canonical Watson-Crick base pairing) into the crRNA to increase the binding affinity between crRNA and its complementary DNA target. The resulting CRISPR-Cas12a (named zCRISPR-Cas12a thereafter) shows an on-target editing efficiency comparable to that of the CRISPR-Cas9 system but with much lower off-target effects than the CRISPR-Cas9 system in mammalian cells. In addition, zCRISPR-Cas12a can be used for precise gene knock-in and highly efficient multiplex genome editing. Overall, the zCRISPR-Cas12a system is superior to the CRISPR-Cas9 system, and our simple crRNA engineering strategy may be extended to other CRISPR-Cas family members as well as their derivatives.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Editing/methods , Humans , HEK293 Cells , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , RNA/genetics , RNA/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , Bacterial Proteins , Endodeoxyribonucleases
2.
medRxiv ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38746294

ABSTRACT

Type V CRISPR-Cas effectors have revolutionized molecular diagnostics by facilitating the detection of nucleic acid biomarkers. However, their dependence on the presence of protospacer adjacent motif (PAM) sites on the target double-stranded DNA (dsDNA) greatly limits their flexibility as diagnostic tools. Here we present a novel method named PICNIC that solves the PAM problem for CRISPR-based diagnostics with just a simple ∼10-min modification to contemporary CRISPR-detection protocols. Our method involves the separation of dsDNA into individual single-stranded DNA (ssDNA) strands through a high- temperature and high-pH treatment. We then detect the released ssDNA strands with diverse Cas12 enzymes in a PAM-free manner. We show the utility of PICNIC by successfully applying it for PAM-free detection with three different subtypes of the Cas12 family- Cas12a, Cas12b, and Cas12i. Notably, by combining PICNIC with a truncated 15-nucleotide spacer containing crRNA, we demonstrate PAM-independent detection of clinically important single- nucleotide polymorphisms with CRISPR. We apply this approach to detect the presence of a drug-resistant variant of HIV-1, specifically the K103N mutant, that lacks a PAM site in the vicinity of the mutation. Additionally, we successfully translate our approach to clinical samples by detecting and genotyping HCV-1a and HCV-1b variants with 100% specificity at a PAM-less site within the HCV genome. In summary, PICNIC is a simple yet groundbreaking method that enhances the flexibility and precision of CRISPR-Cas12-based diagnostics by eliminating the restriction of the PAM sequence.

3.
Cell Rep ; 43(2): 113777, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38358883

ABSTRACT

There is a broad diversity among Cas12a endonucleases that possess nucleic acid detection and gene-editing capabilities, but few are studied extensively. Here, we present an exhaustive investigation of 23 Cas12a orthologs, with a focus on their cis- and trans-cleavage activities in combination with noncanonical crRNAs. Through biochemical assays, we observe that some noncanonical crRNA:Cas12a effector complexes outperform their corresponding wild-type crRNA:Cas12a. Cas12a can recruit crRNA with modifications such as loop extensions and split scaffolds. Moreover, the tolerance of Cas12a to noncanonical crRNA is also observed in mammalian cells through the formation of indels. We apply the adaptability of Cas12a:crRNA complexes to detect SARS-CoV-2 in clinical nasopharyngeal swabs, saliva samples, and tracheal aspirates. Our findings further expand the toolbox for next-generation CRISPR-based diagnostics and gene editing.


Subject(s)
CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems , Animals , CRISPR-Cas Systems/genetics , Gene Editing , Endonucleases/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Mammals/metabolism
4.
Mol Ecol Resour ; 24(1): e13881, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37888995

ABSTRACT

Rapid identification of organisms is essential for many biological and medical disciplines, from understanding basic ecosystem processes, disease diagnosis, to the detection of invasive pests. CRISPR-based diagnostics offers a novel and rapid alternative to other identification methods and can revolutionize our ability to detect organisms with high accuracy. Here we describe a CRISPR-based diagnostic developed with the universal cytochrome-oxidase 1 gene (CO1). The CO1 gene is the most sequenced gene among Animalia, and therefore our approach can be adopted to detect nearly any animal. We tested the approach on three difficult-to-identify moth species (Keiferia lycopersicella, Phthorimaea absoluta and Scrobipalpa atriplicella) that are major invasive pests globally. We designed an assay that combines recombinase polymerase amplification (RPA) with CRISPR for signal generation. Our approach has a much higher sensitivity than real-time PCR assays and achieved 100% accuracy for identification of all three species, with a detection limit of up to 120 fM for P. absoluta and 400 fM for the other two species. Our approach does not require a sophisticated laboratory, reduces the risk of cross-contamination, and can be completed in less than 1 h. This work serves as a proof of concept that has the potential to revolutionize animal detection and monitoring.


Subject(s)
Ecosystem , Lepidoptera , Animals , Insecta , Biological Assay , Electron Transport Complex IV/genetics
5.
Nat Commun ; 14(1): 5409, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37669948

ABSTRACT

Cas12a, a CRISPR-associated protein complex, has an inherent ability to cleave DNA substrates and is utilized in diagnostic tools to identify DNA molecules. We demonstrate that multiple orthologs of Cas12a activate trans-cleavage in the presence of split activators. Specifically, the PAM-distal region of the crRNA recognizes RNA targets provided that the PAM-proximal seed region has a DNA target. Our method, Split Activator for Highly Accessible RNA Analysis (SAHARA), detects picomolar concentrations of RNA without sample amplification, reverse-transcription, or strand-displacement by simply supplying a short DNA sequence complementary to the seed region. Beyond RNA detection, SAHARA outperforms wild-type CRISPR-Cas12a in specificity towards point-mutations and can detect multiple RNA and DNA targets in pooled crRNA/Cas12a arrays via distinct PAM-proximal seed DNAs. In conclusion, SAHARA is a simple, yet powerful nucleic acid detection platform based on Cas12a that can be applied in a multiplexed fashion and potentially be expanded to other CRISPR-Cas enzymes.


Subject(s)
CRISPR-Cas Systems , RNA , Point Mutation , RNA, Guide, CRISPR-Cas Systems , Recombination, Genetic
6.
bioRxiv ; 2023 May 18.
Article in English | MEDLINE | ID: mdl-37292907

ABSTRACT

Rapid identification of organisms is essential across many biological and medical disciplines, from understanding basic ecosystem processes and how organisms respond to environmental change, to disease diagnosis and detection of invasive pests. CRISPR-based diagnostics offers a novel and rapid alternative to other identification methods and can revolutionize our ability to detect organisms with high accuracy. Here we describe a CRISPR-based diagnostic developed with the universal cytochrome-oxidase 1 gene (CO1). The CO1 gene is the most sequenced gene among Animalia, and therefore our approach can be adopted to detect nearly any animal. We tested the approach on three difficult-to-identify moth species (Keiferia lycopersicella, Phthorimaea absoluta, and Scrobipalpa atriplicella) that are major invasive pests globally. We designed an assay that combines recombinase polymerase amplification (RPA) with CRISPR for signal generation. Our approach has a much higher sensitivity than other real time-PCR assays and achieved 100% accuracy for identification of all three species, with a detection limit of up to 120 fM for P. absoluta and 400 fM for the other two species. Our approach does not require a lab setting, reduces the risk of cross-contamination, and can be completed in less than one hour. This work serves as a proof of concept that has the potential to revolutionize animal detection and monitoring.

7.
Cell Rep Med ; 4(5): 101037, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37160120

ABSTRACT

CRISPR-Cas-based diagnostics have the potential to elevate nucleic acid detection. CRISPR-Cas systems can be combined with a pre-amplification step in a one-pot reaction to simplify the workflow and reduce carryover contamination. Here, we report an engineered Cas12b with improved thermostability that falls within the optimal temperature range (60°C-65°C) of reverse transcription-loop-mediated isothermal amplification (RT-LAMP). Using de novo structural analyses, we introduce mutations to wild-type BrCas12b to tighten its hydrophobic cores, thereby enhancing thermostability. The one-pot detection assay utilizing the engineered BrCas12b, called SPLENDID (single-pot LAMP-mediated engineered BrCas12b for nucleic acid detection of infectious diseases), exhibits robust trans-cleavage activity up to 67°C in a one-pot setting. We validate SPLENDID clinically in 80 serum samples for hepatitis C virus (HCV) and 66 saliva samples for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high specificity and accuracy. We obtain results in as little as 20 min, and with the extraction process, the entire assay can be performed within an hour.


Subject(s)
COVID-19 , Nucleic Acids , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/genetics , Nucleic Acids/genetics , COVID-19 Testing , CRISPR-Cas Systems/genetics
8.
Res Sq ; 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36824842

ABSTRACT

CRISPR is a prominent bioengineering tool and the type V CRISPR-associated protein complex, Cas12a, is widely used in diagnostic platforms due to its innate ability to cleave DNA substrates. Here we demonstrate that Cas12a can also be programmed to directly detect RNA substrates without the need for reverse transcription or strand displacement. We discovered that while the PAM-proximal "seed" region of the crRNA exclusively recognizes DNA for initiating trans-cleavage, the PAM-distal region or 3'-end of the crRNA can tolerate both RNA and DNA substrates. Utilizing this property, we developed a method named Split Activators for Highly Accessible RNA Analysis or 'SAHARA' to detect RNA sequences at the PAM-distal region of the crRNA by merely supplying a short ssDNA or a PAM containing dsDNA to the seed region. Notably, SAHARA is Mg2+ concentration- and pH-dependent, and it was observed to work robustly at room temperature with multiple orthologs of Cas12a. SAHARA also displayed a significant improvement in the specificity for target recognition as compared to the wild-type CRISPR-Cas12a, at certain positions along the crRNA. By employing SAHARA we achieved amplification-free detection of picomolar concentrations of miRNA-155 and hepatitis C virus RNA. Finally, SAHARA can use a PAM-proximal DNA as a switch to control the trans-cleavage activity of Cas12a for the detection of both DNA and RNA targets. With this, multicomplex arrays can be made to detect distinct DNA and RNA targets with pooled crRNA/Cas12a complexes. In conclusion, SAHARA is a simple, yet powerful nucleic acid detection platform based on Cas12a that can be applied in a multiplexed fashion and potentially be expanded to other CRISPR-Cas enzymes.

9.
bioRxiv ; 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36778248

ABSTRACT

CRISPR is a prominent bioengineering tool and the type V CRISPR-associated protein complex, Cas12a, is widely used in diagnostic platforms due to its innate ability to cleave DNA substrates. Here we demonstrate that Cas12a can also be programmed to directly detect RNA substrates without the need for reverse transcription or strand displacement. We discovered that while the PAM-proximal "seed" region of the crRNA exclusively recognizes DNA for initiating trans- cleavage, the PAM-distal region or 3'-end of the crRNA can tolerate both RNA and DNA substrates. Utilizing this property, we developed a method named Split Activators for Highly Accessible RNA Analysis or 'SAHARA' to detect RNA sequences at the PAM-distal region of the crRNA by merely supplying a short ssDNA or a PAM containing dsDNA to the seed region. Notably, SAHARA is Mg 2+ concentration- and pH-dependent, and it was observed to work robustly at room temperature with multiple orthologs of Cas12a. SAHARA also displayed a significant improvement in the specificity for target recognition as compared to the wild-type CRISPR-Cas12a, at certain positions along the crRNA. By employing SAHARA we achieved amplification-free detection of picomolar concentrations of miRNA-155 and hepatitis C virus RNA. Finally, SAHARA can use a PAM-proximal DNA as a switch to control the trans-cleavage activity of Cas12a for the detection of both DNA and RNA targets. With this, multicomplex arrays can be made to detect distinct DNA and RNA targets with pooled crRNA/Cas12a complexes. In conclusion, SAHARA is a simple, yet powerful nucleic acid detection platform based on Cas12a that can be applied in a multiplexed fashion and potentially be expanded to other CRISPR-Cas enzymes.

10.
PLoS One ; 18(1): e0276700, 2023.
Article in English | MEDLINE | ID: mdl-36649279

ABSTRACT

COVID-19 is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The severity of COVID-19 is highly variable and related to known (e.g., age, obesity, immune deficiency) and unknown risk factors. The widespread clinical symptoms encompass a large group of asymptomatic COVID-19 patients, raising a crucial question regarding genetic susceptibility, e.g., whether individual differences in immunity play a role in patient symptomatology and how much human leukocyte antigen (HLA) contributes to this. To reveal genetic determinants of susceptibility to COVID-19 severity in the population and further explore potential immune-related factors, we performed a genome-wide association study on 284 confirmed COVID-19 patients (cases) and 95 healthy individuals (controls). We compared cases and controls of European (EUR) ancestry and African American (AFR) ancestry separately. We identified two loci on chromosomes 5q32 and 11p12, which reach the significance threshold of suggestive association (p<1x10-5 threshold adjusted for multiple trait testing) and are associated with the COVID-19 susceptibility in the European ancestry (index rs17448496: odds ratio[OR] = 0.173; 95% confidence interval[CI], 0.08-0.36 for G allele; p = 5.15× 10-5 and index rs768632395: OR = 0.166; 95% CI, 0.07-0.35 for A allele; p = 4.25×10-6, respectively), which were associated with two genes, PPP2R2B at 5q32, and LRRC4C at 11p12, respectively. To explore the linkage between HLA and COVID-19 severity, we applied fine-mapping analysis to dissect the HLA association with mild and severe cases. Using In-silico binding predictions to map the binding of risk/protective HLA to the viral structural proteins, we found the differential presentation of viral peptides in both ancestries. Lastly, extrapolation of the identified HLA from the cohort to the worldwide population revealed notable correlations. The study uncovers possible differences in susceptibility to COVID-19 in different ancestral origins in the genetic background, which may provide new insights into the pathogenesis and clinical treatment of the disease.


Subject(s)
COVID-19 , Genetic Predisposition to Disease , Humans , COVID-19/epidemiology , COVID-19/genetics , Florida , Genome-Wide Association Study , Histocompatibility Antigens Class I/genetics , HLA Antigens , SARS-CoV-2 , White/genetics , Black or African American/genetics
11.
Nat Commun ; 13(1): 6852, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369146

ABSTRACT

Despite major advances in HIV testing, ultrasensitive detection of early infection remains challenging, especially for the viral capsid protein p24, which is an early virological biomarker of HIV-1 infection. Here, To improve p24 detection in patients missed by immunological tests that dominate the diagnostics market, we show a click chemistry amplified nanopore (CAN) assay for ultrasensitive quantitative detection. This strategy achieves a 20.8 fM (0.5 pg/ml) limit of detection for HIV-1 p24 antigen in human serum, demonstrating 20~100-fold higher analytical sensitivity than nanocluster-based immunoassays and clinically used enzyme-linked immunosorbent assay, respectively. Clinical validation of the CAN assay in a pilot cohort shows p24 quantification at ultra-low concentration range and correlation with CD4 count and viral load. We believe that this strategy can improve the utility of p24 antigen in detecting early infection and monitoring HIV progression and treatment efficacy, and also can be readily modified to detect other infectious diseases.


Subject(s)
HIV Infections , HIV-1 , Nanopores , Humans , Click Chemistry , HIV Core Protein p24 , HIV Testing , Enzyme-Linked Immunosorbent Assay , Sensitivity and Specificity
12.
Article in English | MEDLINE | ID: mdl-36032199

ABSTRACT

The SARS-CoV-2 pandemic has had a significant impact worldwide. Currently, the most common detection methods for the virus are polymerase chain reaction (PCR) and lateral flow tests. PCR takes more than an hour to obtain the results and lateral flow tests have difficulty with detecting the virus at low concentrations. In this study, 60 clinical human saliva samples, which included 30 positive and 30 negative samples confirmed with RT-PCR, were screened for COVID-19 using disposable glucose biosensor strips and a reusable printed circuit board. The disposable strips were gold plated and functionalized to immobilize antibodies on the gold film. After functionalization, the strips were connected to the gate electrode of a metal-oxide-semiconductor field-effect transistor on the printed circuit board to amplify the test signals. A synchronous double-pulsed bias voltage was applied to the drain of the transistor and strips. The resulting change in drain waveforms was converted to digital readings. The RT-PCR-confirmed saliva samples were tested again using quantitative PCR (RT-qPCR) to determine cycling threshold (Ct) values. Ct values up to 45 refer to the number of amplification cycles needed to detect the presence of the virus. These PCR results were compared with digital readings from the sensor to better evaluate the sensor technology. The results indicate that the samples with a range of Ct values from 17.8 to 35 can be differentiated, which highlights the increased sensitivity of this sensor technology. This research exhibits the potential of this biosensor technology to be further developed into a cost-effective, point-of-care, and portable rapid detection method for SARS-CoV-2.

13.
Commun Med (Lond) ; 2: 7, 2022.
Article in English | MEDLINE | ID: mdl-35603267

ABSTRACT

Background: The coronavirus disease (COVID-19) caused by SARS-CoV-2 has swept through the globe at an unprecedented rate. CRISPR-based detection technologies have emerged as a rapid and affordable platform that can shape the future of diagnostics. Methods: We developed ENHANCEv2 that is composed of a chimeric guide RNA, a modified LbCas12a enzyme, and a dual reporter construct to improve the previously reported ENHANCE system. We validated both ENHANCE and ENHANCEv2 using 62 nasopharyngeal swabs and compared the results to RT-qPCR. We created a lyophilized version of ENHANCEv2 and characterized its detection capability and stability. Results: Here we demonstrate that when coupled with an RT-LAMP step, ENHANCE detects COVID-19 samples down to a few copies with 95% accuracy while maintaining a high specificity towards various isolates of SARS-CoV-2 against 31 highly similar and common respiratory pathogens. ENHANCE works robustly in a wide range of magnesium concentrations (3 mM-13 mM), allowing for further assay optimization. Our clinical validation results for both ENHANCE and ENHANCEv2 show 60/62 (96.7%) sample agreement with RT-qPCR results while only using 5 µL of sample and 20 minutes of CRISPR reaction. We show that the lateral flow assay using paper-based strips displays 100% agreement with the fluorescence-based reporter assay during clinical validation. Finally, we demonstrate that a lyophilized version of ENHANCEv2 shows high sensitivity and specificity for SARS-CoV-2 detection while reducing the CRISPR reaction time to as low as 3 minutes while maintaining its detection capability for several weeks upon storage at room temperature. Conclusions: CRISPR-based diagnostic platforms offer many advantages as compared to conventional qPCR-based detection methods. Our work here provides clinical validation of ENHANCE and its improved form ENHANCEv2 for the detection of COVID-19.

14.
EBioMedicine ; 77: 103926, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35290826

ABSTRACT

BACKGROUND: Current SARS-CoV-2 detection platforms lack the ability to differentiate among variants of concern (VOCs) in an efficient manner. CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated) based detection systems have the potential to transform the landscape of COVID-19 diagnostics due to their programmability; however, most of these methods are reliant on either a multi-step process involving amplification or elaborate guide RNA designs. METHODS: Three Cas12b proteins from Alicyclobacillus acidoterrestris (AacCas12b), Alicyclobacillus acidiphilus (AapCas12b), and Brevibacillus sp. SYP-B805 (BrCas12b) were expressed and purified, and their thermostability was characterised by differential scanning fluorimetry, cis-, and trans-cleavage activities over a range of temperatures. The BrCas12b was then incorporated into a reverse transcription loop-mediated isothermal amplification (RT-LAMP)-based one-pot reaction system, coined CRISPR-SPADE (CRISPR Single Pot Assay for Detecting Emerging VOCs). FINDINGS: Here we describe a complete one-pot detection reaction using a thermostable Cas12b effector endonuclease from Brevibacillus sp. to overcome these challenges detecting and discriminating SARS-CoV-2 VOCs in clinical samples. CRISPR-SPADE was then applied for discriminating SARS-CoV-2 VOCs, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) and validated in 208 clinical samples. CRISPR-SPADE achieved 92·8% sensitivity, 99·4% specificity, and 96·7% accuracy within 10-30 min for discriminating the SARS-CoV-2 VOCs, in agreement with S gene sequencing, achieving a positive and negative predictive value of 99·1% and 95·1%, respectively. Interestingly, for samples with high viral load (Ct value ≤ 30), 100% accuracy and sensitivity were attained. To facilitate dissemination and global implementation of the assay, a lyophilised version of one-pot CRISPR-SPADE reagents was developed and combined with an in-house portable multiplexing device capable of interpreting two orthogonal fluorescence signals. INTERPRETATION: This technology enables real-time monitoring of RT-LAMP-mediated amplification and CRISPR-based reactions at a fraction of the cost of a qPCR system. The thermostable Brevibacillus sp. Cas12b offers relaxed primer design for accurately detecting SARS-CoV-2 VOCs in a simple and robust one-pot assay. The lyophilised reagents and simple instrumentation further enable rapid deployable point-of-care diagnostics that can be easily expanded beyond COVID-19. FUNDING: This project was funded in part by the United States-India Science & Technology Endowment Fund- COVIDI/247/2020 (P.K.J.), Florida Breast Cancer Foundation- AGR00018466 (P.K.J.), National Institutes of Health- NIAID 1R21AI156321-01 (P.K.J.), Centers for Disease Control and Prevention- U01GH002338 (R.R.D., J.A.L., & P.K.J.), University of Florida, Herbert Wertheim College of Engineering (P.K.J.), University of Florida Vice President Office of Research and CTSI seed funds (M.S.), and University of Florida College of Veterinary Medicine and Emerging Pathogens Institute (R.R.D.).


Subject(s)
Brevibacillus , COVID-19 , Brevibacillus/genetics , COVID-19/diagnosis , Humans , RNA, Guide, Kinetoplastida , SARS-CoV-2/genetics
15.
Methods ; 203: 116-124, 2022 07.
Article in English | MEDLINE | ID: mdl-33577982

ABSTRACT

Rapid detection of nucleic acids is essential for clinical diagnosis of a wide range of infectious and non-infectious diseases. CRISPR-based diagnostic platforms are well-established for rapid and specific detection of nucleic acids but suffer from a low detection sensitivity without a target pre-amplification step. Our recently developed detection system, called CRISPR-ENHANCE, employs engineered crRNAs and optimized conditions to achieve a significantly higher sensitivity and enable femtomolar levels of nucleic acid detection even without target pre-amplification. Using the CRISPR-ENHANCE platform and following the methodology detailed in this paper, nucleic acid detection for low copy numbers can be achieved in less than an hour through either a fluorescence-based detection or a lateral flow assay. The step-by-step instructions provided, in addition to describing how to perform both assays, incorporate details on a LAMP/RT-LAMP-based target amplification step to enable detection of RNA, ssDNA and dsDNA. Furthermore, a protocol for in-house expression and purification of LbCas12a using CL7/lm7-based affinity chromatography, which has been used to achieve a high yield and purity of the enzyme in a single-step, is provided.


Subject(s)
Nucleic Acids , SARS-CoV-2 , CRISPR-Cas Systems/genetics , DNA, Single-Stranded/genetics , Nucleic Acid Amplification Techniques/methods
16.
medRxiv ; 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34704101

ABSTRACT

Current SARS-CoV-2 detection platforms lack the ability to differentiate among variants of concern (VOCs) in an efficient manner. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) has the potential to transform diagnostics due to its programmability. However, many of the CRISPR-based detection methods are reliant on either a multi-step process involving amplification or elaborate guide RNA designs. A complete one-pot detection reaction using alternative Cas effector endonucleases has been proposed to overcome these challenges. Yet, current approaches using Alicyclobacillus acidiphilus Cas12b (AapCas12b) are limited by its thermal instability at optimum reverse transcription loop-mediated isothermal amplification (RT-LAMP) reaction temperatures. Herein, we demonstrate that a novel Cas12b from Brevibacillus sp. SYP-B805 (referred to as BrCas12b) has robust trans-cleavage activity at ideal RT-LAMP conditions. A competitive profiling study of BrCas12b against Cas12b homologs from other bacteria genera underscores the potential of BrCas12b in the development of new diagnostics. As a proof-of-concept, we incorporated BrCas12b into an RT-LAMP-mediated one-pot reaction system, coined CRISPR-SPADE (CRISPR Single Pot Assay for Detecting Emerging VOCs) to enable rapid, differential detection of SARS-CoV-2 VOCs, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2) in 205 clinical samples. Notably, a BrCas12b detection signal was observed within 1-3 minutes of amplification, achieving an overall 98.1% specificity, 91.2% accuracy, and 88.1% sensitivity within 30 minutes. Significantly, for samples with high viral load (C t value ≤ 30), 100% accuracy and sensitivity were attained. To facilitate dissemination and global implementation of the assay, we combined the lyophilized one-pot reagents with a portable multiplexing device capable of interpreting fluorescence signals at a fraction of the cost of a qPCR system. With relaxed design requirements, one-pot detection, and simple instrumentation, this assay has the capability to advance future diagnostics.

17.
Nat Commun ; 11(1): 6104, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33235194

ABSTRACT

A Correction to this paper has been published: https://doi.org/10.1038/s41467-020-20117-z.

18.
Nat Commun ; 11(1): 4906, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32999292

ABSTRACT

The CRISPR-Cas12a RNA-guided complexes have tremendous potential for nucleic acid detection but are limited to the picomolar detection limit without an amplification step. Here, we develop a platform with engineered crRNAs and optimized conditions that enabled us to detect various clinically relevant nucleic acid targets with higher sensitivity, achieving a limit of detection in the femtomolar range without any target pre-amplification step. By extending the 3'- or 5'-ends of the crRNA with different lengths of ssDNA, ssRNA, and phosphorothioate ssDNA, we discover a self-catalytic behavior and an augmented rate of LbCas12a-mediated collateral cleavage activity as high as 3.5-fold compared to the wild-type crRNA and with significant improvement in specificity for target recognition. Particularly, the 7-mer DNA extension to crRNA is determined to be universal and spacer-independent for enhancing the sensitivity and specificity of LbCas12a-mediated nucleic acid detection. We perform a detailed characterization of our engineered ENHANCE system with various crRNA modifications, target types, reporters, and divalent cations. With isothermal amplification of SARS-CoV-2 RNA using RT-LAMP, the modified crRNAs are incorporated in a paper-based lateral flow assay that can detect the target with up to 23-fold higher sensitivity within 40-60 min.


Subject(s)
Bacterial Proteins/metabolism , Betacoronavirus/genetics , CRISPR-Associated Proteins/metabolism , Endodeoxyribonucleases/metabolism , Nucleic Acid Amplification Techniques/methods , RNA, Viral/isolation & purification , Trans-Activators/metabolism , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , CRISPR-Cas Systems , Clinical Laboratory Techniques , Clustered Regularly Interspaced Short Palindromic Repeats , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , DNA, Single-Stranded , Pandemics , Pneumonia, Viral , RNA, Guide, Kinetoplastida/genetics , RNA, Viral/genetics , SARS-CoV-2
19.
Nanoscale ; 11(44): 21317-21323, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31670340

ABSTRACT

There is a critical need for the development of safe and efficient delivery technologies for CRISPR/Cas9 to advance translation of genome editing to the clinic. Non-viral methods that are simple, efficient, and completely based on biologically-derived materials could offer such potential. Here we report a simple and modular tandem peptide-based nanocomplex system with cell-targeting capacity that efficiently combines guide RNA (sgRNA) with Cas9 protein, and facilitates internalization of sgRNA/Cas9 ribonucleoprotein complexes to yield robust genome editing across multiple cell lines.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Transfer Techniques , HeLa Cells , Humans
20.
Chembiochem ; 19(12): 1264-1270, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29516677

ABSTRACT

There is a need for methods to chemically incorporate photocleavable labels into synthetic and biologically sourced nucleic acids in a chemically defined and reversible manner. We have previously demonstrated that the light-cleaved diazo di-methoxy nitro phenyl ethyl (diazo-DMNPE) group has a remarkable regiospecificity for modifying terminally phosphorylated siRNA. Building on this observation, we have identified conditions under which a diazo-DMNPE reagent that we designed (diazo-DMNPE-azide or DDA) is able to singly modify any nucleic acid (RNA, DNA, single-stranded, double-stranded, 3' or 5' phosphate). It can then be modified with any clickable reagent to incorporate arbitrary labels such as fluorophores into the nucleic acid. Finally, native nucleic acid can be regenerated directly through photolysis of the reagent. Use of the described approach should allow for the tagging of any nucleic acid, from any source-natural or unnatural-while allowing for the light-induced regeneration of native nucleic acid.


Subject(s)
Azides/chemistry , Azo Compounds/chemistry , Click Chemistry/methods , DNA/chemistry , Nitro Compounds/chemistry , RNA/chemistry , Azides/chemical synthesis , Azo Compounds/chemical synthesis , DNA/chemical synthesis , Indicators and Reagents , Nitro Compounds/chemical synthesis , Phosphorylation , Photolysis , RNA/chemical synthesis , Staining and Labeling/methods , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...