Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
1.
Ann Neurol ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822686

ABSTRACT

Outcomes following vagus nerve stimulation (VNS) improve over years after implantation in children with drug-resistant epilepsy. The added value of deep brain stimulation (DBS) instead of continued VNS optimization is unknown. In a prospective, non-blinded, randomized patient preference trial of 18 children (aged 8-17 years) who did not respond to VNS after at least 1 year, add-on DBS resulted in greater seizure reduction compared with an additional year of VNS optimization (51.9% vs. 12.3%, p = 0.047). Add-on DBS also resulted in less bothersome seizures (p = 0.03), but no change in quality of life. DBS may be considered earlier for childhood epilepsy after non-response to VNS. ANN NEUROL 2024.

2.
Epilepsy Res ; 203: 107367, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38703703

ABSTRACT

BACKGROUND: Hippocampal sclerosis (HS) is a common surgical substrate in adult epilepsy surgery cohorts but variably reported in various pediatric cohorts. OBJECTIVE: We aimed to study the epilepsy phenotype, radiological and pathological variability, seizure and neurocognitive outcomes in children with drug-resistant epilepsy and hippocampal sclerosis (HS) with or without additional subtle signal changes in anterior temporal lobe who underwent surgery. METHODS: This retrospective study enrolled children with drug-resistant focal epilepsy and hippocampal sclerosis with or without additional subtle T2-Fluid Attenuated Inversion Recovery (FLAR)/Proton Density (PD) signal changes in anterior temporal lobe who underwent anterior temporal lobectomy with amygdalohippocampectomy. Their clinical, EEG, neuropsychological, radiological and pathological data were reviewed and summarized. RESULTS: Thirty-six eligible patients were identified. The mean age at seizure onset was 3.7 years; 25% had daily seizures at time of surgery. Isolated HS was noted in 22 (61.1%) cases and additional subtle signal changes in ipsilateral temporal lobe in 14 (38.9%) cases. Compared to the normative population, the group mean performance in intellectual functioning and most auditory and visual memory tasks were significantly lower than the normative sample. The mean age at surgery was 12.3 years; 22 patients (61.1%) had left hemispheric surgeries. ILAE class 1 outcomes was seen in 28 (77.8%) patients after a mean follow up duration of 2.3 years. Hippocampal sclerosis was noted pathologically in 32 (88.9%) cases; type 2 (54.5%) was predominant subtype where further classification was possible. Additional pathological abnormalities were seen in 11 cases (30.6%); these had had similar rates of seizure freedom as compared to children with isolated hippocampal sclerosis/gliosis (63.6% vs 84%, p=0.21). Significant reliable changes were observed across auditory and visual memory tasks at an individual level post surgery. CONCLUSIONS: Favourable seizure outcomes were seen in most children with isolated radiological hippocampal sclerosis. Patients with additional pathological abnormalities had similar rates of seizure freedom as compared to children with isolated hippocampal sclerosis/gliosis.

3.
Neuroimage Clin ; 42: 103613, 2024.
Article in English | MEDLINE | ID: mdl-38714093

ABSTRACT

BACKGROUND AND OBJECTIVES: Gelastic seizures due to hypothalamic hamartomas (HH) are challenging to treat, in part due to an incomplete understanding of seizure propagation pathways. Although magnetic resonance imaging-guided laser interstitial thermal therapy (MRgLITT) is a promising intervention to disconnect HH from ictal propagation networks, the optimal site of ablation to achieve seizure freedom is not known. In this study, we investigated intraoperative post-ablation changes in resting-state functional connectivity to identify large-scale networks associated with successful disconnection of HH. METHODS: Children who underwent MRgLITT for HH at two institutions were consecutively recruited and followed for a minimum of one year. Seizure freedom was defined as Engel score of 1A at the last available follow-up. Immediate pre- and post- ablation resting-state functional MRI scans were acquired while maintaining a constant depth of general anesthetic. Multivariable generalized linear models were used to identify intraoperative changes in large-scale connectivity associated with seizure outcomes. RESULTS: Twelve patients underwent MRgLITT for HH, five of whom were seizure-free at their last follow-up. Intraprocedural changes in thalamocortical circuitry involving the anterior cingulate cortex were associated with seizure-freedom. Children who were seizure-free demonstrated an increase and decrease in connectivity to the pregenual and dorsal anterior cingulate cortices, respectively. In addition, children who became seizure-free demonstrated increased thalamic connectivity to the periaqueductal gray immediately following MRgLITT. DISCUSSION: Successful disconnection of HH is associated with intraoperative, large-scale changes in thalamocortical connectivity. These changes provide novel insights into the large-scale basis of gelastic seizures and may represent intraoperative biomarkers of treatment success.


Subject(s)
Hamartoma , Hypothalamic Diseases , Laser Therapy , Magnetic Resonance Imaging , Thalamus , Humans , Hamartoma/surgery , Hamartoma/physiopathology , Hamartoma/diagnostic imaging , Hamartoma/complications , Male , Female , Hypothalamic Diseases/surgery , Hypothalamic Diseases/physiopathology , Hypothalamic Diseases/diagnostic imaging , Laser Therapy/methods , Child , Child, Preschool , Magnetic Resonance Imaging/methods , Thalamus/diagnostic imaging , Thalamus/physiopathology , Thalamus/surgery , Infant , Adolescent , Epilepsies, Partial/surgery , Epilepsies, Partial/physiopathology , Epilepsies, Partial/diagnostic imaging , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Treatment Outcome
4.
Genes (Basel) ; 15(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38540325

ABSTRACT

Infantile epileptic spasms syndrome (IESS) is a devastating developmental epileptic encephalopathy (DEE) consisting of epileptic spasms, as well as one or both of developmental regression or stagnation and hypsarrhythmia on EEG. A myriad of aetiologies are associated with the development of IESS; broadly, 60% of cases are thought to be structural, metabolic or infectious in nature, with the remainder genetic or of unknown cause. Epilepsy genetics is a growing field, and over 28 copy number variants and 70 single gene pathogenic variants related to IESS have been discovered to date. While not exhaustive, some of the most commonly reported genetic aetiologies include trisomy 21 and pathogenic variants in genes such as TSC1, TSC2, CDKL5, ARX, KCNQ2, STXBP1 and SCN2A. Understanding the genetic mechanisms of IESS may provide the opportunity to better discern IESS pathophysiology and improve treatments for this condition. This narrative review presents an overview of our current understanding of IESS genetics, with an emphasis on animal models of IESS pathogenesis, the spectrum of genetic aetiologies of IESS (i.e., chromosomal disorders, single-gene disorders, trinucleotide repeat disorders and mitochondrial disorders), as well as available genetic testing methods and their respective diagnostic yields. Future opportunities as they relate to precision medicine and epilepsy genetics in the treatment of IESS are also explored.


Subject(s)
Epilepsy , Epileptic Syndromes , Spasms, Infantile , Animals , Precision Medicine , Spasms, Infantile/genetics , Epilepsy/genetics , Epileptic Syndromes/genetics , Spasm/complications
5.
Neurol India ; 72(1): 129-137, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38443014

ABSTRACT

CNKSR2 variants have been associated with X linked intellectual disability and epilepsy including developmental and epileptic encephalopathy with spike wave activation in sleep (D/EE SWAS) in males. We aimed to describe a sibling pair with a novel pathogenic variant in CNKSR2 with D/EE SWAS and review published cases of D/EE SWAS. A retrospective chart review and a comprehensive review of the literature were conducted. Two brothers with a novel pathogenic variant in the CNKSR2 gene (c. 114delG, p.Ile39SerfsX14) were identified. The epilepsy phenotype was similar to previous cases and was characterized by early onset seizures, nocturnal seizures (focal motor with/without impaired awareness), global developmental delay and language impairment, frontal central temporal predominant epileptiform discharges with a spike wave index >95%, and treatment resistance. However, phenotypic variability was observed and the younger brother had milder neuro developmental impairment, and the diagnosis of D/EE SWAS was made by surveillance electro encephalogram (EEG). Literature search yielded 23 cases, and their clinical/neuro physiological features are discussed. To conclude, CNKSR2 related D/EE SWAS may be early onset and occur before the age of 5 years in some. Early surveillance EEG may aid in diagnosis. Phenotypic variability was observed in our cases as well as sibling pairs in the literature, which may impact genetic counseling.


Subject(s)
Epilepsy, Generalized , Intellectual Disability , Male , Humans , Child, Preschool , Retrospective Studies , Sleep , Seizures , Adaptor Proteins, Signal Transducing
7.
J Clin Neurophysiol ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376953

ABSTRACT

PURPOSE: This study reports our center's initial experience with the use of low-frequency stimulation in provoking stimulation-induced seizures (SIS) in children with drug-resistant epilepsy undergoing stereo-EEG evaluations. METHODS: This retrospective study enrolled children aged 2 to 18 years with drug-resistant focal epilepsy who underwent stereo-EEG evaluation and extraoperative direct electrical cortical stimulation to elicit seizures. The low-frequency stimulation parameters consisted of biphasic square waveforms at frequency of 1 Hz, pulse width 1 millisecond, current 1 to 3 mA, and train duration of 20 seconds. Various epilepsy-related, imaging, neurophysiology, and surgery-related variables were collected and summarized. RESULTS: Fourteen children (mean age 13 years; 57.1% girls) were included, 10 of whom had unilateral stereo-EEG coverage. Cortical stimulation for provoking seizures was performed after a median of 5 days after electrode implantation. The median number of electrode-contacts stimulated per patient was 42. Four patients (28.6%) experienced habitual SIS (all extratemporal). The etiology in three patients was focal cortical dysplasia. Interictal high-frequency oscillations at electrode-contacts provoking SIS were observed in three cases (75%). Two of these individuals (50%) had class 1 International League Against Epilepsy seizure outcome at last follow-up, after the resection of the brain regions generating SIS. CONCLUSIONS: Low-frequency (1-Hz) stimulation could provoke habitual SIS in nearly one-fourth of children with focal epilepsy undergoing stereo-EEG monitoring. This study provides a limited pediatric experience with the low-frequency cortical stimulation and SIS.

9.
Epilepsia ; 65(3): 709-724, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38231304

ABSTRACT

OBJECTIVE: KCTD7-related progressive myoclonic epilepsy (PME) is a rare autosomal-recessive disorder. This study aimed to describe the clinical details and genetic variants in a large international cohort. METHODS: Families with molecularly confirmed diagnoses of KCTD7-related PME were identified through international collaboration. Furthermore, a systematic review was done to identify previously reported cases. Salient demographic, epilepsy, treatment, genetic testing, electroencephalographic (EEG), and imaging-related variables were collected and summarized. RESULTS: Forty-two patients (36 families) were included. The median age at first seizure was 14 months (interquartile range = 11.75-22.5). Myoclonic seizures were frequently the first seizure type noted (n = 18, 43.9%). EEG and brain magnetic resonance imaging findings were variable. Many patients exhibited delayed development with subsequent progressive regression (n = 16, 38.1%). Twenty-one cases with genetic testing available (55%) had previously reported variants in KCTD7, and 17 cases (45%) had novel variants in KCTD7 gene. Six patients died in the cohort (age range = 1.5-21 years). The systematic review identified 23 eligible studies and further identified 59 previously reported cases of KCTD7-related disorders from the literature. The phenotype for the majority of the reported cases was consistent with a PME (n = 52, 88%). Other reported phenotypes in the literature included opsoclonus myoclonus ataxia syndrome (n = 2), myoclonus dystonia (n = 2), and neuronal ceroid lipofuscinosis (n = 3). Eight published cases died over time (14%, age range = 3-18 years). SIGNIFICANCE: This study cohort and systematic review consolidated the phenotypic spectrum and natural history of KCTD7-related disorders. Early onset drug-resistant epilepsy, relentless neuroregression, and severe neurological sequalae were common. Better understanding of the natural history may help future clinical trials.


Subject(s)
Epilepsies, Myoclonic , Myoclonic Epilepsies, Progressive , Unverricht-Lundborg Syndrome , Adolescent , Child , Child, Preschool , Humans , Infant , Young Adult , Electroencephalography , Epilepsies, Myoclonic/genetics , Myoclonic Epilepsies, Progressive/genetics , Potassium Channels/genetics , Seizures
11.
Pediatr Neurol ; 151: 138-142, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38157719

ABSTRACT

BACKGROUND: KBG syndrome is a genetic disorder characterized by short stature, dysmorphic features, macrodontia, cognitive impairment, and limb anomalies. Epilepsy is an important comorbidity associated with KBG syndrome, although the entire phenotypic spectrum may not be fully appreciated. METHODS: We identified five new patients with KBG syndrome-related epilepsy and compared their phenotype to previously reported cases in the literature. RESULTS: Five patients with KBG syndrome-related epilepsy were identified. Three patients (60%) were male. Median age of seizure onset was 18 months (interquartile range 5, 32). The epilepsy type was generalized in three patients (60%); in two, the epilepsy type was combined (40%), with focal and generalized seizures. In one patient (20%), the epilepsy syndrome was classifiable and the child was diagnosed with myoclonic-atonic epilepsy. All five patients had pathogenic variants in the ANKRD11 gene. Epilepsy was refractory in two patients (40%). No specific antiseizure medication (ASM) was found to be superior. Literature review yielded 134 cases, median age of seizure onset was 4 years, and seizures were generalized (n = 60, 44%), focal (n = 26, 19%), or combined (n = 13, 10%). An epilepsy syndrome was diagnosed in 12 patients (8.8%). In those with documented response to ASM (n = 49), 22.4% were refractory (n = 11). CONCLUSIONS: Our study confirms that few patients with epilepsy and KBG syndrome have an identifiable epilepsy syndrome and generalized seizures are most common. We highlight that epilepsy associated with KBG syndrome may occur before age one year and should be an important diagnostic consideration in this age group.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Epilepsies, Myoclonic , Epilepsy , Intellectual Disability , Tooth Abnormalities , Child , Humans , Male , Infant , Child, Preschool , Female , Abnormalities, Multiple/diagnosis , Intellectual Disability/complications , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Bone Diseases, Developmental/diagnosis , Tooth Abnormalities/diagnosis , Tooth Abnormalities/genetics , Facies , Repressor Proteins/genetics , Epilepsy/complications , Epilepsy/drug therapy , Seizures/genetics , Phenotype
12.
J Int Med Res ; 51(11): 3000605231213231, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38008901

ABSTRACT

OBJECTIVE: Due to variability in reports, the aim of this meta-analysis was to evaluate the incidence and risk factors of post-stroke early seizures (ES) and post-stroke epilepsy (PSE). METHODS: The MEDLINE, EMBASE and Web of Science databases were searched for post-stroke ES/PSE articles published on any date up to November 2020. Post-stroke ES included seizures occurring within 7 days of stroke, and PSE included at least one unprovoked seizure. Using random effects models, the incidence and risk factors of post-stroke ES and PSE were evaluated. The study was retrospectively registered with INPLASY (INPLASY2023100008). RESULTS: Of 128 included studies in total, the incidence of post-stroke ES was 0.07 (95% confidence interval [CI] 0.05, 0.10) and PSE was 0.10 (95% CI 0.08, 0.13). The rates were higher in children than adults. Risk factors for post-stroke ES included hemorrhagic stroke (odds ratio [OR] 2.14, 95% CI 1.44, 3.18), severe strokes (OR 2.68, 95% CI 1.73, 4.14), cortical involvement (OR 3.09, 95% CI 2.11, 4.51) and hemorrhagic transformation (OR 2.70, 95% CI 1.58, 4.60). Risk factors for PSE included severe strokes (OR 4.92, 95% CI 3.43, 7.06), cortical involvement (OR 3.20, 95% CI 2.13, 4.81), anterior circulation infarcts (OR 3.28, 95% CI 1.34, 8.03), hemorrhagic transformation (OR 2.81, 95% CI 1.25, 6.30) and post-stroke ES (OR 7.24, 95% CI 3.73, 14.06). CONCLUSION: Understanding the risk factors of post-stroke ES/PSE may identify high-risk individuals who might benefit from prophylactic treatment.


Subject(s)
Epilepsy , Stroke , Adult , Child , Humans , Incidence , Seizures/etiology , Seizures/complications , Stroke/complications , Stroke/epidemiology , Epilepsy/epidemiology , Epilepsy/etiology , Risk Factors
14.
Neural Netw ; 167: 827-837, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37741065

ABSTRACT

Cognitive flexibility encompasses the ability to efficiently shift focus and forms a critical component of goal-directed attention. The neural substrates of this process are incompletely understood in part due to difficulties in sampling the involved circuitry. We leverage stereotactic intracranial recordings to directly resolve local-field potentials from otherwise inaccessible structures to study moment-to-moment attentional activity in children with epilepsy performing a flexible attentional task. On an individual subject level, we employed deep learning to decode neural features predictive of task performance indexed by single-trial reaction time. These models were subsequently aggregated across participants to identify predictive brain regions based on AAL atlas and FIND functional network parcellations. Through this approach, we show that fluctuations in beta (12-30 Hz) and gamma (30-80 Hz) power reflective of increased top-down attentional control and local neuronal processing within relevant large-scale networks can accurately predict single-trial task performance. We next performed connectomic profiling of these highly predictive nodes to examine task-related engagement of distributed functional networks, revealing exclusive recruitment of the dorsal default mode network during shifts in attention. The identification of distinct substreams within the default mode system supports a key role for this network in cognitive flexibility and attention in children. Furthermore, convergence of our results onto consistent functional networks despite significant inter-subject variability in electrode implantations supports a broader role for deep learning applied to intracranial electrodes in the study of human attention.


Subject(s)
Connectome , Deep Learning , Humans , Child , Brain Mapping , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Brain/physiology , Attention/physiology , Electroencephalography , Magnetic Resonance Imaging , Cognition/physiology
16.
Lancet Neurol ; 22(9): 812-825, 2023 09.
Article in English | MEDLINE | ID: mdl-37596007

ABSTRACT

BACKGROUND: Most neonatal and infantile-onset epilepsies have presumed genetic aetiologies, and early genetic diagnoses have the potential to inform clinical management and improve outcomes. We therefore aimed to determine the feasibility, diagnostic yield, and clinical utility of rapid genome sequencing in this population. METHODS: We conducted an international, multicentre, cohort study (Gene-STEPS), which is a pilot study of the International Precision Child Health Partnership (IPCHiP). IPCHiP is a consortium of four paediatric centres with tertiary-level subspecialty services in Australia, Canada, the UK, and the USA. We recruited infants with new-onset epilepsy or complex febrile seizures from IPCHiP centres, who were younger than 12 months at seizure onset. We excluded infants with simple febrile seizures, acute provoked seizures, known acquired cause, or known genetic cause. Blood samples were collected from probands and available biological parents. Clinical data were collected from medical records, treating clinicians, and parents. Trio genome sequencing was done when both parents were available, and duo or singleton genome sequencing was done when one or neither parent was available. Site-specific protocols were used for DNA extraction and library preparation. Rapid genome sequencing and analysis was done at clinically accredited laboratories, and results were returned to families. We analysed summary statistics for cohort demographic and clinical characteristics and the timing, diagnostic yield, and clinical impact of rapid genome sequencing. FINDINGS: Between Sept 1, 2021, and Aug 31, 2022, we enrolled 100 infants with new-onset epilepsy, of whom 41 (41%) were girls and 59 (59%) were boys. Median age of seizure onset was 128 days (IQR 46-192). For 43 (43% [binomial distribution 95% CI 33-53]) of 100 infants, we identified genetic diagnoses, with a median time from seizure onset to rapid genome sequencing result of 37 days (IQR 25-59). Genetic diagnosis was associated with neonatal seizure onset versus infantile seizure onset (14 [74%] of 19 vs 29 [36%] of 81; p=0·0027), referral setting (12 [71%] of 17 for intensive care, 19 [44%] of 43 non-intensive care inpatient, and 12 [28%] of 40 outpatient; p=0·0178), and epilepsy syndrome (13 [87%] of 15 for self-limited epilepsies, 18 [35%] of 51 for developmental and epileptic encephalopathies, 12 [35%] of 34 for other syndromes; p=0·001). Rapid genome sequencing revealed genetic heterogeneity, with 34 unique genes or genomic regions implicated. Genetic diagnoses had immediate clinical utility, informing treatment (24 [56%] of 43), additional evaluation (28 [65%]), prognosis (37 [86%]), and recurrence risk counselling (all cases). INTERPRETATION: Our findings support the feasibility of implementation of rapid genome sequencing in the clinical care of infants with new-onset epilepsy. Longitudinal follow-up is needed to further assess the role of rapid genetic diagnosis in improving clinical, quality-of-life, and economic outcomes. FUNDING: American Academy of Pediatrics, Boston Children's Hospital Children's Rare Disease Cohorts Initiative, Canadian Institutes of Health Research, Epilepsy Canada, Feiga Bresver Academic Foundation, Great Ormond Street Hospital Charity, Medical Research Council, Murdoch Children's Research Institute, National Institute of Child Health and Human Development, National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, One8 Foundation, Ontario Brain Institute, Robinson Family Initiative for Transformational Research, The Royal Children's Hospital Foundation, University of Toronto McLaughlin Centre.


Subject(s)
Epilepsy , Seizures, Febrile , Male , Female , Infant, Newborn , Humans , Child , Pilot Projects , Cohort Studies , Feasibility Studies , Epilepsy/diagnosis , Epilepsy/genetics , Ontario
17.
J Biomater Sci Polym Ed ; 34(17): 2438-2461, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37640030

ABSTRACT

Essential oil from Melaleuca alternifolia (also known as Tea tree essential oil, TTO) is used as traditional medicine and used as therapeutic in medicine, food and cosmetic sectors. However, this oil is highly unstable, volatile and prone to oxidation which limits its practical use. The objective of this study was synthesis of tea tree oil based O/W (oil/water) nanoemulsions (tea tree essential oil nanoemulsions, TNE) and evaluation of its biological potential. Physiological characterization was carried out using UV, fluorescent, and FT-IR techniques. Various biological activities such as anticancerous, antidiabetic and anti-inflammatory were also estimated. Pharmacokinetics study on TNE was carried out. Encapsulation efficiency of nanoemulsions was found to be 83%. Nanoemulsions were spherical in shape with globule size 308 nm, zeta potential -9.42 and polydispersity index was 0.31. Nanoemulsions were stable even after 50 days of storage at different temperatures. Anti-oxidant potential of TNE was conducted by various assays and IC50 were: Nitric oxide radical scavenging activity:225.1, DPPH radical scavenging activity:30.66, Iron chelating assay:38.73, and Iron reducing assay:39.36. Notable anticancer activity was observed with the percent cell viability of HeLa cells after treatment with 1, 2 and 5 µl of TNE was 82%, 41% and 24%, respectively. Antidiabetic study revealed that TNE inhibited -amylase in a dose-dependent manner, with 88% inhibition at its higher volume of 250 µl. Drug kinetic study revealed that nanoemulsions exhibited first-order model. Based on this, the possible role of M. alternifolia oil-based nanoemulsions in cosmetic, food, and pharma sectors has been discussed.


Subject(s)
Melaleuca , Oils, Volatile , Tea Tree Oil , Humans , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antioxidants/pharmacology , Melaleuca/chemistry , HeLa Cells , Spectroscopy, Fourier Transform Infrared , Tea Tree Oil/pharmacology , Tea Tree Oil/chemistry , Anti-Inflammatory Agents/pharmacology , Tea
18.
Seizure ; 111: 147-150, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37634352

ABSTRACT

PURPOSE: Hippocampal Sclerosis (HS) may co-exist with temporal or extratemporal lesions (dual pathology) in children and is usually ipsilateral to the radiological lesion. Here were report three cases with extensive hemispheric cortical malformation and drug resistant epilepsy who had persistent seizures after functional hemispherectomy (FH) and developed contralateral HS after the surgery. METHODS: This retrospective study enrolled children who underwent FH and developed contralateral HS after surgery. Their clinical, EEG, radiological and pathological data were reviewed and summarized. RESULTS: Ninety-five children underwent FH during the study period; Three cases (3.2%) were eligible. They all had unilateral extensive hemispheric cortical malformation who underwent FH between 3 and 5 months of age with no clinical, EEG or radiological suggestion for involvement of contralateral hemisphere prior to FH. All three patients had persisting seizures after FH. Contralateral HS was detected between 2.2 to 3.7 years after FH in all three cases. Two of the patients showed pathogenic variants in GATOR1 pathway genes. CONCLUSIONS: The genesis of contralateral HS in the reported patients remains unexplained. The presence and distribution of "second-hit" somatic mutations may play an important role in governing the seizure outcomes of epilepsy surgery in patients with apparently unilateral malformations of cortical development.

19.
Seizure ; 110: 119-125, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37352690

ABSTRACT

OBJECTIVE: Epileptic Encephalopathy / Developmental Epileptic Encephalopathy with spike-and-wave activation in sleep (EE/DEE-SWAS) is defined as an epilepsy syndrome characterized by neurodevelopmental regression temporally related to the emergence of significant activation of spike-wave discharges in EEG during sleep. The availability of genetic testing has made it evident that monogenic and chromosomal abnormalities play an aetiological role in the development of EE/DEE-SWAS. We sought to review the literature to better understand the genetic landscape of EE/DEE-SWAS. METHODS: In this systematic review, we reviewed cases of EE/DEE-SWAS associated with a genetic aetiology, collecting information related to the underlying aetiology, onset, management, and EEG patterns. RESULTS: One hundred and seventy-two cases of EE/DEE-SWAS were identified. Genetic causes of note included pathogenic variants in GRIN2A, ZEB2, CNKSR2 and chromosome 17q21.31 deletions, each of which demonstrated unique clinical characteristics, EEG patterns, and age of onset. Factors identified to raise suspicion of a potential genetic aetiology included the presentation of DEE-SWAS and onset of SWAS under the age of five years. Treatment of EE/DEE-SWAS due to genetic causes was diverse, including a combination of anti-seizure medications, steroids, and other clinical strategies, with no clear consensus on a preferred or superior treatment. Data collected was significantly heterogeneous, with a lack of consistent use of neuropsychology testing, EEG patterns, or use of established clinical definitions. CONCLUSIONS: Uniformity concerning the new definition of EE/DEE-SWAS, guidelines for management and more frequent genetic screening will be needed to guide best practices for the treatment of patients with EE/DEE-SWAS.


Subject(s)
Epilepsy, Generalized , Epileptic Syndromes , Humans , Child, Preschool , Sleep/genetics , Genetic Testing , Electroencephalography , Adaptor Proteins, Signal Transducing
SELECTION OF CITATIONS
SEARCH DETAIL
...