Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 28(19): 3197-3201, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30170943

ABSTRACT

Utilizing the already described 3,4-bi-aryl pyridine series as a starting point, incorporation of a second ring system with a hydrogen bond donor and additional hydrophobic contacts yielded the azaindole series which exhibited potent, picomolar RSK2 inhibition and the most potent in vitro target modulation seen thus far for a RSK inhibitor. In the context of the more potent core, several changes at the phenol moiety were assessed to potentially find a tool molecule appropriate for in vivo evaluation.


Subject(s)
Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Animals , Chromatography, Liquid , Drug Design , Humans , Mass Spectrometry , Phenols/pharmacology , Protein Kinase Inhibitors/chemistry , Proton Magnetic Resonance Spectroscopy , Structure-Activity Relationship
2.
J Med Chem ; 58(17): 6766-83, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26270416

ABSTRACT

While the p90 ribosomal S6 kinase (RSK) family has been implicated in multiple tumor cell functions, the full understanding of this kinase family has been restricted by the lack of highly selective inhibitors. A bis-phenol pyrazole was identified from high-throughput screening as an inhibitor of the N-terminal kinase of RSK2. Structure-based drug design using crystallography, conformational analysis, and scaffold morphing resulted in highly optimized difluorophenol pyridine inhibitors of the RSK kinase family as demonstrated cellularly by the inhibition of YB1 phosphorylation. These compounds provide for the first time in vitro tools with an improved selectivity and potency profile to examine the importance of RSK signaling in cancer cells and to fully evaluate RSK as a therapeutic target.


Subject(s)
Pyrazoles/chemistry , Pyridines/chemistry , Pyrimidines/chemistry , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Animals , Cell Line , Crystallography, X-Ray , Humans , Male , Mice , Models, Molecular , Phosphorylation , Protein Conformation , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Rats, Sprague-Dawley , Signal Transduction , Structure-Activity Relationship , Y-Box-Binding Protein 1/metabolism
3.
Bioorg Med Chem Lett ; 25(18): 3788-92, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26259804

ABSTRACT

A series of structure based drug design hypotheses and focused screening efforts led to the identification of tetrahydropyrrolo-diazepenones with striking potency against ERK2 kinase. The role of fluorination in mitigating microsomal clearance was systematically explored. Ultimately, it was found that fluorination of a cyclopentanol substructure provided significant improvement in both potency and human metabolic stability.


Subject(s)
Azepines/pharmacology , Heterocyclic Compounds, 2-Ring/pharmacology , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrroles/pharmacology , Azepines/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Heterocyclic Compounds, 2-Ring/chemistry , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrroles/chemistry , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 25(17): 3626-9, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26144345

ABSTRACT

A series of structure based drug design hypotheses and focused screening efforts drove improvements in the potency and lipophilic efficiency of tetrahydro-pyrazolopyridine based ERK2 inhibitors. Elaboration of a fragment chemical lead established a new lipophilic aryl-Tyr interaction resulting in a substantial potency improvement. Subsequent cleavage of the lipophilic moiety led to reconfiguration of the ligand bound binding cleft. The reconfiguration established a polar contact between a newly liberated N-H and a vicinal Asp, resulting in further improvements in lipophilic efficiency and in vitro clearance.


Subject(s)
Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrazoles/chemistry , Pyridines/chemistry , Structure-Activity Relationship , Adenosine Triphosphate/metabolism , Animals , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Binding Sites , Crystallography, X-Ray , Drug Design , Drug Evaluation, Preclinical/methods , Humans , Ligands , Mitogen-Activated Protein Kinase 1/chemistry , Models, Molecular , Protein Conformation , Rats
5.
ACS Med Chem Lett ; 6(1): 37-41, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25589927

ABSTRACT

A saturation strategy focused on improving the selectivity and physicochemical properties of ATR inhibitor HTS hit 1 led to a novel series of highly potent and selective tetrahydropyrazolo[1,5-a]pyrazines. Use of PI3Kα mutants as ATR crystal structure surrogates was instrumental in providing cocrystal structures to guide the medicinal chemistry designs. Detailed DMPK studies involving cyanide and GSH as trapping agents during microsomal incubations, in addition to deuterium-labeled compounds as mechanistic probes uncovered the molecular basis for the observed CYP3A4 TDI in the series.

6.
ACS Med Chem Lett ; 6(1): 42-6, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25589928

ABSTRACT

Compound 13 was discovered through morphing of the ATR biochemical HTS hit 1. The ABI series was potent and selective for ATR. Incorporation of a 6-azaindole afforded a marked increase in cellular potency but was associated with poor PK and hERG ion channel inhibition. DMPK experiments established that CYP P450 and AO metabolism in conjunction with Pgp and BCRP efflux were major causative mechanisms for the observed PK. The series also harbored the CYP3A4 TDI liability driven by the presence of both a morpholine and an indole moiety. Incorporation of an adjacent fluorine or nitrogen into the 6-azaindole addressed many of the various medicinal chemistry issues encountered.

SELECTION OF CITATIONS
SEARCH DETAIL
...