Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Robot ; 5(39)2020 02 26.
Article in English | MEDLINE | ID: mdl-33022604

ABSTRACT

Socially assistive robotics (SAR) has great potential to provide accessible, affordable, and personalized therapeutic interventions for children with autism spectrum disorders (ASD). However, human-robot interaction (HRI) methods are still limited in their ability to autonomously recognize and respond to behavioral cues, especially in atypical users and everyday settings. This work applies supervised machine-learning algorithms to model user engagement in the context of long-term, in-home SAR interventions for children with ASD. Specifically, we present two types of engagement models for each user: (i) generalized models trained on data from different users and (ii) individualized models trained on an early subset of the user's data. The models achieved about 90% accuracy (AUROC) for post hoc binary classification of engagement, despite the high variance in data observed across users, sessions, and engagement states. Moreover, temporal patterns in model predictions could be used to reliably initiate reengagement actions at appropriate times. These results validate the feasibility and challenges of recognition and response to user disengagement in long-term, real-world HRI settings. The contributions of this work also inform the design of engaging and personalized HRI, especially for the ASD community.


Subject(s)
Autism Spectrum Disorder/psychology , Autism Spectrum Disorder/therapy , Robotics/instrumentation , Self-Help Devices , Social Behavior , Algorithms , Child , Child Behavior , Communication Aids for Disabled , Cues , Feasibility Studies , Home Care Services , Humans , Models, Psychological , Models, Theoretical , Precision Medicine/instrumentation , Precision Medicine/statistics & numerical data , Robotics/statistics & numerical data , Supervised Machine Learning , User-Computer Interface
2.
Front Robot AI ; 6: 110, 2019.
Article in English | MEDLINE | ID: mdl-33501125

ABSTRACT

Socially assistive robots (SAR) have shown great potential to augment the social and educational development of children with autism spectrum disorders (ASD). As SAR continues to substantiate itself as an effective enhancement to human intervention, researchers have sought to study its longitudinal impacts in real-world environments, including the home. Computational personalization stands out as a central computational challenge as it is necessary to enable SAR systems to adapt to each child's unique and changing needs. Toward that end, we formalized personalization as a hierarchical human robot learning framework (hHRL) consisting of five controllers (disclosure, promise, instruction, feedback, and inquiry) mediated by a meta-controller that utilized reinforcement learning to personalize instruction challenge levels and robot feedback based on each user's unique learning patterns. We instantiated and evaluated the approach in a study with 17 children with ASD, aged 3-7 years old, over month-long interventions in their homes. Our findings demonstrate that the fully autonomous SAR system was able to personalize its instruction and feedback over time to each child's proficiency. As a result, every child participant showed improvements in targeted skills and long-term retention of intervention content. Moreover, all child users were engaged for a majority of the intervention, and their families reported the SAR system to be useful and adaptable. In summary, our results show that autonomous, personalized SAR interventions are both feasible and effective in providing long-term in-home developmental support for children with diverse learning needs.

SELECTION OF CITATIONS
SEARCH DETAIL
...