Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Asian Pac J Trop Biomed ; 4(Suppl 1): S8-S15, 2014 May.
Article in English | MEDLINE | ID: mdl-25183152

ABSTRACT

Murrel namely Channa striatus or haruan contains all essential elements to maintain good health and to recover the lost energy after prolonged illness. The fatty acid composition (% of total fatty acid) indicated the abundant presence of C16:0 fatty acid as 30% and the other major fatty acids were C22:6 (15%), C20:4 (19%), C18:1 (12%) and C18:0 (15%). Haruan contains arachidonic acid (C20:4) as 19.0%, a precursor for prostaglandin and thromboxane biosyntheses. Both fatty and amino acids are important components for wound healing processes. Both the fillet and mucus extracts of haruan were found to exhibit a concentration dependent antinociceptive activity. In vitro antioxidant activity was higher in Channa roe protein hydrolysate than in Labeo roe protein hydrolysate in both DPPH radical scavenging and ferric reducing power. Protein content of roe concentrates (RPC) was found to be 90.2% (Channa) and 82.5% (Lates). Water absorption, oil absorption, foam capacity, stability and emulsifying capacity were found to be higher in Channa RPC than in Lates RPC. Characterization of protein hydrolysates from muscle and myofibrillar samples of haruan showed different kinetic and proteolytic activities. The skin extract of haruan influences the serotonergic receptor system thus they can function as an anti-depressant. Thus, haruan is the best example for food as medicine.

2.
J Nat Med ; 62(2): 179-87, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18404320

ABSTRACT

This study was performed out to establish the antinociceptive, anti-inflammatory, and antipyretic properties of an aqueous extract of Dicranopteris linearis leaves in experimental animals. The antinociceptive activity was measured using the abdominal constriction, hot plate, and formalin tests. The anti-inflammatory and antipyretic activities were measured using the carrageenan-induced paw edema and brewer's yeast-induced pyrexia tests, respectively. The extract, obtained after 72 h soaking of the air-dried leaves in distilled water and then prepared in the doses of 13.2, 66.0, 132.0, and 660.0 mg/kg, was administered subcutaneously 30 min before subjecting the animals to the assays mentioned above. Generally, the extract, at all doses used, was found to have significant (P < 0.05) concentration-independent antinociceptive, anti-inflammatory, and anti-pyretic activity. In conclusion, the aqueous extract of D. linearis has antinociceptive, anti-inflammatory, and antipyretic activity, supporting previous claims of its traditional use by the Malays to treat various ailments, particularly fever.


Subject(s)
Analgesics, Non-Narcotic/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Phytotherapy , Plant Extracts/therapeutic use , Analgesics, Non-Narcotic/pharmacology , Analysis of Variance , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Carrageenan , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Edema/chemically induced , Edema/drug therapy , Fever/drug therapy , Fever/etiology , Injections, Subcutaneous , Male , Mice , Mice, Inbred BALB C , Pain Measurement , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Leaves/chemistry , Rats , Rats, Sprague-Dawley , Saccharomyces cerevisiae
3.
Fundam Clin Pharmacol ; 20(4): 365-72, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16867020

ABSTRACT

The present study was carried out to investigate on the possible involvement of L-arginine/nitric oxide/cyclic guanosine monophosphate (L-arginine/NO/cGMP) pathway in the aqueous extract of Muntingia calabura (AEMC) leaves antinociception in mice assessed by abdominal constriction test. The AEMC, obtained by soaking the dried leaves in distilled water (DH(2)O) (1 : 2; w/v) for 24 h, was prepared in concentrations of 10%, 50% and 100% that were approximately equivalent to doses of 27, 135 and 270 mg/kg, and administered subcutaneously (s.c.) 5 min after pre-treatment (s.c.) of mice with DH(2)O, L-arginine (20 mg/kg), N(G)-monomethyl-L-arginine acetate (L-NMMA; 20 mg/kg), N(G)-nitro-L-arginine methyl esters (L-NAME; 20 mg/kg), methylene blue (MB) (20 mg/kg), respectively. The AEMC was found to exhibit a concentration-dependent antinociception after pre-challenge with DH(2)O. Interestingly, pre-treatment with L-arginine was found to block significantly (P < 0.05) the AEMC antinociception but only at the highest concentration (100%) of AEMC used. On the other hand, pre-treatment with L-NAME was found to significantly (P < 0.05) enhance the low concentration but inhibit the high concentration AEMC antinociception. MB was found to significantly (P < 0.05) enhance AEMC antinociception at all concentrations used. Except for the higher concentration of AEMC used, co-treatment with L-NAME was found to insignificantly and significantly (P < 0.05) reverse the L-arginine effect when given alone or with low concentration AEMC, respectively. In addition, co-treatment with MB significantly (P < 0.05) reversed the L-arginine effect when given alone or with 10% concentration AEMC but failed to affect the activity of the rest of concentrations used. As a conclusion, this study has demonstrated the involvement of L-arginine/NO/cGMP pathway in AEMC antinociception.


Subject(s)
Analgesics/pharmacology , Arginine/metabolism , Cyclic GMP/metabolism , Elaeocarpaceae , Nitric Oxide/metabolism , Pain/prevention & control , Signal Transduction/drug effects , Acetic Acid , Analgesics/therapeutic use , Animals , Arginine/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Guanylate Cyclase/antagonists & inhibitors , Guanylate Cyclase/metabolism , Male , Methylene Blue/pharmacology , Mice , Mice, Inbred BALB C , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Pain/chemically induced , Pain/metabolism , Pain Measurement , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Leaves , omega-N-Methylarginine/pharmacology
4.
J Pharm Pharm Sci ; 8(2): 199-206, 2005 Aug 03.
Article in English | MEDLINE | ID: mdl-16124931

ABSTRACT

PURPOSE: To determine the involvement of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway in aqueous supernatant of haruan (Channa striatus) fillet (ASH) antinociception using the acetic acid-induced abdominal constriction test. METHODS: The ASH was prepared by soaking fresh haruan fillet in chloroform:methanol (CM) (2/1 (v/v)) for 72 h followed by evaporation of the upper layer supernatant to remove any solvent residues. The supernatant was then subjected to a freeze-drying process (48 h) followed by doses preparation. RESULTS: Subcutaneous (SC) administration of ASH alone (0.170, 0.426 and 1.704 mg/kg) exhibited a dose-dependent antinociception. On the other hand, 20 mg/kg (SC) of L-arginine and MB exhibited a significant nociception and antinociception, while D-arginine and L-NAME did not produce any effect at all. Pre-treatment with L-arginine was found to significantly reverse the three respective doses of ASH antinociception; pre-treatment with D-arginine did not produce any significant change in the ASH activity; pre-treatment with L-NAME only significantly increased the 0.170 and 0.426 mg/kg ASH antinociception; and pre-treatment with MB significantly enhanced the respective doses of ASH antinociception, respectively. Furthermore, co-treatment with L-NAME significantly enhanced the L-arginine reversal effect on 0.426 mg/kg ASH antinociception. In addition, MB significantly reversed the L-arginine nociception on 0.426 mg/kg ASH. CONCLUSIONS: These finding suggest ASH antinociception involves the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway. The presence of NO was found to reverse ASH antinociceptive activity while blocking of cGMP system enhanced it.


Subject(s)
Analgesics/pharmacology , Arginine/pharmacology , Fish Venoms/pharmacology , Methylene Blue/pharmacology , NG-Nitroarginine Methyl Ester/pharmacology , Pain Measurement/drug effects , Animals , Dose-Response Relationship, Drug , Drug Interactions/physiology , Fish Venoms/isolation & purification , Fishes , Male , Mice , Mice, Inbred BALB C , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/physiology , Pain Measurement/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...