Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Curr Org Synth ; 21(4): 513-558, 2024.
Article in English | MEDLINE | ID: mdl-38804327

ABSTRACT

Immediately after the invention of 'Click Chemistry' in 2002, the regioselective 1,2,3- triazole scaffolds resulted from respective organic azides and terminal alkynes under Cu(I) catalysis have been well recognized as the functional heterocyclic core at the centre of modern organic chemistry, medicinal chemistry, and material sciences. This CuAAC reaction has several notable features including excellent regioselectivity, high-to-excellent yields, easy to execute, short reaction time, modular in nature, mild condition, readily available starting materials, etc. Moreover, the resulting regioselective triazoles can serve as amide bond isosteres, a privileged functional group in drug discovery and development. More than hundreds of reviews had been devoted to the 'Click Chemistry' in special reference to 1,4-disubstituted triazoles, while only little efforts were made for an opposite regioisomer i.e., 1,5-disubstituted triazole. Herein, we have presented various classical approaches for an expeditious synthesis of a wide range of biologically relevant 1,5- disubstituted 1,2,3-triazole analogues. The syntheses of such a class of diversly functionalized triazoles have emerged as a crucial investigation in the domain of chemistry and biology. This tutorial review covers the literature assessment on the development of various synthetic protocols for the functionalized 1,5-disubstituted triazoles reported during the last 12 years.

2.
Nat Commun ; 14(1): 5714, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37714849

ABSTRACT

A repeat expansion in the C9orf72 (C9) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we investigate single nucleus transcriptomics (snRNA-seq) and epigenomics (snATAC-seq) in postmortem motor and frontal cortices from C9-ALS, C9-FTD, and control donors. C9-ALS donors present pervasive alterations of gene expression with concordant changes in chromatin accessibility and histone modifications. The greatest alterations occur in upper and deep layer excitatory neurons, as well as in astrocytes. In neurons, the changes imply an increase in proteostasis, metabolism, and protein expression pathways, alongside a decrease in neuronal function. In astrocytes, the alterations suggest activation and structural remodeling. Conversely, C9-FTD donors have fewer high-quality neuronal nuclei in the frontal cortex and numerous gene expression changes in glial cells. These findings highlight a context-dependent molecular disruption in C9-ALS and C9-FTD, indicating unique effects across cell types, brain regions, and diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Frontotemporal Dementia/genetics , Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Transcriptome/genetics , Epigenome , Mutation
3.
Chemistry ; 29(55): e202301749, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37432103

ABSTRACT

A novel organocatalyzed [3+2] cycloaddition reaction of nitroolefins with glycosyl azides as well as organic azides has been developed for successful construction of 1,5-disubstituted triazolyl glycoconjugates. This metal-free and acid-free, regioselective synthetic protocol proceeds in the presence of only Schreiner thiourea organocatalysts, which enable the required activation of nitroolefins through double hydrogen bonding. The straightforward, operationally simple, and regioselectivity of this methodology, complementing to the classical RuAAC catalyzed synthesis of 1,5-disubstituted 1,2,3-triazoles. In the presence of catalytic amount of Schreiner thiourea organocatalyst, organic azides react with a broad array of nitroolefins producing a series of diverse 1,5-disubstituted 1,2,3- triazoles in good yields with excellent regioselectivity.

4.
Chem Biodivers ; 20(8): e202300478, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37410812

ABSTRACT

To develop a better chemotherapeutically potential candidate for lung cancer treatment and cure with repurposed motifs, quinine has been linked with biocompatible CuAAC-inspired regioselective 1,2,3-triazole linker and a series of ten novel 1,2,3-triazolyl-9-quinine conjugates have been developed by utilizing click conjugation of glycosyl ether alkynes with 9-epi-9-azido-9-deoxy-quinine under standard click conditions. In parallel, the docking study indicated that the resulting conjugates have an overall appreciable interaction with ALK-5 macromolecules. Moreover, the mannose-triazolyl conjugate exhibited the highest binding interactions of -7.6 kcal/mol with H-bond interaction with the targeted macromolecular system and indicate the hope for future trials for anti-lung cancer candidates.


Subject(s)
Quinine , Quinine/pharmacology , Molecular Docking Simulation
5.
Chem Rec ; 23(11): e202300167, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37522634

ABSTRACT

Click Chemistry, a modular, rapid, and one of the most reliable tool for the regioselective 1,2,3-triazole forming [3+2] reaction of organic azide and terimal alkyne is widely explored in various emerging domains of research ranging from chemical biology to catalysis and medicinal chemistry to material science. This regioselective reaction from a diverse range of azido-alkyne scaffolds has been well performed in both intermolecular as well as intramolecular fashions. In comparison to the intermolecular metal (Cu/Ru/Ni) variant of 'Click Chemistry', the intramolecular click tool is little addressed. The intramolecular click chemistry is exemplified as a mordern tool of cyclization which involves metal-catalyzed (CuAAC/RuAAC) cyclization, organo-catalyzed cyclization, and thermal-induced topochemical reaction. Thus, we report herein the recent approaches on intramolecular azide-alkyne cycloaddition 'Click Chemistry' with their wide-spread emerging applications in the developement of a diverse range of molecules including fused-heterocycles, well-defined peptidomemics, and macrocyclic architectures of various notable features.

6.
Carbohydr Res ; 527: 108804, 2023 May.
Article in English | MEDLINE | ID: mdl-37031650

ABSTRACT

In nature, almost all cells are covered with a complex array of glycan chain namely sialic acids or nuraminic acids, a negatively charged nine carbon sugars which is considered for their great therapeutic importance since long back. Owing to its presence at the terminal end of lipid bilayer (commonly known as terminal sugars), the well-defined sialosides or sialoconjugates have served pivotal role on the cell surfaces and thus, the sialic acid-containing glycans can modulate and mediate a number of imperative cellular interactions. Understanding of the sialo-protein interaction and their roles in vertebrates in regard of normal physiology, pathological variance, and evolution has indeed a noteworthy journey in medicine. In this tutorial review, we present a concise overview about the structure, linkages in chemical diversity, biological significance followed by chemical and enzymatic modification/synthesis of sialic acid containing glycans. A more focus is attempted about the recent advances, opportunity, and more over growing impact of sialosides and sialoconjugates in future drug discovery and development.


Subject(s)
N-Acetylneuraminic Acid , Sialic Acids , Animals , N-Acetylneuraminic Acid/chemistry , Sialic Acids/chemistry , Polysaccharides/chemistry , Sialyltransferases/metabolism , Sugars
7.
Carbohydr Res ; 521: 108674, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36126412

ABSTRACT

Acetimidates, a valuable intermediate has been well explored as versatile synthon in a number of organic transformations particularly as suitable donors in glycosylation reactions. Herein, we explored acetimidates to furnish high-to-excellent yield of diverse glycosylated esters under one-pot mild reaction condition. The commercially available trichloroacetonitrile is implemented for the activation of carboxylic acid via in situ generation of trichloroacetimidate, which was subsequently attacked by sugar alcohols to deliver high-to-excellent yields of desired glycosylated esters. The devised method has some notable features such as metal-free condition, one-pot mild reaction condition, easy-handling, high-to-excellent yields, and broad substrate scope.


Subject(s)
Carboxylic Acids , Esters , Acetonitriles , Glycosylation , Sugar Alcohols
8.
Cureus ; 14(7): e26768, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35967189

ABSTRACT

Background Parental anxiety has been identified as a risk factor affecting the behaviour of children before operative intervention. A preanaesthetic visit is a standard component of preoperative preparation, which may reduce parental anxiety. The use of audiovisual aids to demonstrate the conduct of anaesthesia may help improve parental education and reduce anxiety. Patient and methods We analysed data from a prospective randomised trial conducted at a tertiary care hospital. Parents of children posted for day care dental procedures were enrolled in the study. Children could be of either gender, aged 2-6 years, and categorised as American Society of Anesthesiologists Physical Status (ASA-PS) 1 or 2. Parents' anxiety regarding the surgical and anaesthesia procedure was assessed using the Amsterdam Preoperative Anxiety and Information Scale (APAIS). The first APAIS scoring was recorded on arrival in the preoperative holding area. Thereafter, the participants were randomly allocated into two groups; one group was shown a short video on a smartphone of a dental operating theatre (OT), dental chair and anaesthesia equipment (SPG group), while the other group was verbally explained the dental procedure (conventional management or CM group). The second APAIS scoring was done in the postoperative recovery area one hour after the procedure. Demographic characteristics, socio-economic conditions and history were recorded. Anxiety scores were compared between the two groups, and any change was analysed. Results Seventy parents were included in the study, with 36 randomised to the SPG group and 34 to the CM group. Both groups were comparable in terms of demographic characteristics. There was a statistically significant decrease in anxiety scores in the SPG group, from a mean of 25.47 at the preoperative assessment to 14.92 at the postoperative timepoint (p<0.001). In the CM group, the mean APAIS score decreased from 25.26 to 24.56 (p=0.059). Conclusion There was a significant reduction in anxiety scores in the postoperative period among parents who were shown an operating room video in the preoperative period.

9.
Carbohydr Res ; 508: 108403, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34329845

ABSTRACT

Glycodendrimers are receiving considerable attention to mimic a number of imperative features of cell surface glycoconjugate and acquired excellent relevance to a wide domain of investigations including medicine, pharmaceutics, catalysis, nanotechnology, carbohydrate-protein interaction, and moreover in drug delivery systems. Toward this end, an expeditious, modular, and regioselective triazole-forming CuAAC click approach along with double stage convergent synthetic method was chosen to develop a variety of novel chlorine-containing cyclen cored glycodendrimers of high sugar tethers at low generation of promising therapeutic potential. We developed a novel chlorine-containing hypercore unit with 12 alkynyl functionality originated from cyclen scaffold which was confirmed by its single crystal X-ray data analysis. Further, the modular CuAAC technique was utilized to produce a variety of novel 12-sugar coated (G0) glycodendrimers 12-15 adorn with ß-Glc-, ß-Man-, ß-Gal-, ß-Lac, along with 36-galactose coated (G1) glycodendrimer 18 in good-to-high yield. The structures of the developed glycodendrimer architectures have been well elucidated by extensive spectral analysis including NMR (1H & 13CNMR), HRMS, MALDI-TOF MS, UV-Vis, IR, and SEC (Size Exclusion Chromatogram) data.


Subject(s)
Cyclams , Click Chemistry , Dendrimers
10.
Chem Rev ; 121(13): 7638-7956, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34165284

ABSTRACT

Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.


Subject(s)
Click Chemistry , Copper/chemistry , Glycoconjugates/chemistry , Animals , Catalysis , Humans , Triazoles/chemistry
11.
Cell Stem Cell ; 18(1): 134-43, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26549107

ABSTRACT

Capturing the full potential of human pluripotent stem cell (PSC)-derived neurons in disease modeling and regenerative medicine requires analysis in complex functional systems. Here we establish optogenetic control in human PSC-derived spinal motorneurons and show that co-culture of these cells with human myoblast-derived skeletal muscle builds a functional all-human neuromuscular junction that can be triggered to twitch upon light stimulation. To model neuromuscular disease we incubated these co-cultures with IgG from myasthenia gravis patients and active complement. Myasthenia gravis is an autoimmune disorder that selectively targets neuromuscular junctions. We saw a reversible reduction in the amplitude of muscle contractions, representing a surrogate marker for the characteristic loss of muscle strength seen in this disease. The ability to recapitulate key aspects of disease pathology and its symptomatic treatment suggests that this neuromuscular junction assay has significant potential for modeling of neuromuscular disease and regeneration.


Subject(s)
Embryonic Stem Cells/cytology , Motor Neurons/pathology , Myasthenia Gravis/immunology , Neuromuscular Diseases/physiopathology , Neuromuscular Junction/physiopathology , Optogenetics/methods , Autoimmunity , Coculture Techniques , Complement System Proteins , Humans , Immunoglobulin G/chemistry , Immunohistochemistry , Light , Muscle, Skeletal/physiology , Muscles/physiology , Myasthenia Gravis/physiopathology , Myoblasts/cytology , Pluripotent Stem Cells/cytology , Regeneration , Spinal Cord/pathology , Synapsins/metabolism , Synapsins/physiology
12.
J Neurosci ; 35(33): 11462-81, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26290227

ABSTRACT

The derivation of somatic motoneurons (MNs) from ES cells (ESCs) after exposure to sonic hedgehog (SHH) and retinoic acid (RA) is one of the best defined, directed differentiation strategies to specify fate in pluripotent lineages. In mouse ESCs, MN yield is particularly high after RA + SHH treatment, whereas human ESC (hESC) protocols have been generally less efficient. In an effort to optimize yield, we observe that functional MNs can be derived from hESCs at high efficiencies if treated with patterning molecules at very early differentiation steps before neural induction. Remarkably, under these conditions, equal numbers of human MNs were obtained in the presence or absence of SHH exposure. Using pharmacological and genetic strategies, we demonstrate that early RA treatment directs MN differentiation independently of extrinsic SHH activation by suppressing the induction of GLI3. We further demonstrate that neural induction triggers a switch from a poised to an active chromatin state at GLI3. Early RA treatment prevents this switch by direct binding of the RA receptor at the GLI3 promoter. Furthermore, GLI3 knock-out hESCs can bypass the requirement for early RA patterning to yield MNs efficiently. Our data demonstrate that RA-mediated suppression of GLI3 is sufficient to generate MNs in an SHH-independent manner and that temporal changes in exposure to patterning factors such as RA affect chromatin state and competency of hESC-derived lineages to adopt specific neuronal fates. Finally, our work presents a streamlined platform for the highly efficient derivation of human MNs from ESCs and induced pluripotent stem cells. SIGNIFICANCE STATEMENT: Our study presents a rapid and efficient protocol to generate human motoneurons from embryonic and induced pluripotent stem cells. Surprisingly, and in contrast to previous work, motoneurons are generated in the presence of retinoic acid but in the absence of factors that activate sonic hedgehog signaling. We show that early exposure to retinoic acid modulates the chromatin state of cells to be permissive for motoneuron generation and directly suppresses the induction of GLI3, a negative regulator of SHH signaling. Therefore, our data point to a novel mechanism by which retinoic acid exposure can bypass the requirement for extrinsic SHH treatment during motoneuron induction.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Hedgehog Proteins/pharmacology , Kruppel-Like Transcription Factors/metabolism , Motor Neurons/cytology , Nerve Tissue Proteins/metabolism , Tretinoin/metabolism , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cells, Cultured , Embryonic Stem Cells/drug effects , Female , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/physiology , Humans , Male , Motor Neurons/drug effects , Motor Neurons/metabolism , Tretinoin/pharmacology , Zinc Finger Protein Gli3
13.
Front Cell Neurosci ; 9: 127, 2015.
Article in English | MEDLINE | ID: mdl-25914623

ABSTRACT

Despite numerous advances, treatment-resistant seizures remain an important problem. Loss of neuronal inhibition is present in a variety of epilepsy models and is suggested as a mechanism for increased excitability, leading to the proposal that grafting inhibitory interneurons into seizure foci might relieve refractory seizures. Indeed, transplanted medial ganglionic eminence interneuron progenitors (MGE-IPs) mature into GABAergic interneurons that increase GABA release onto cortical pyramidal neurons, and this inhibition is associated with reduced seizure activity. An obvious conclusion is that inhibitory coupling between the new interneurons and pyramidal cells underlies this effect. We hypothesized that the primary mechanism for the seizure-limiting effects following MGE-IP transplantation is the tonic conductance that results from activation of extrasynaptic GABAA receptors (GABAA-Rs) expressed on cortical pyramidal cells. Using in vitro and in vivo recording techniques, we demonstrate that GABAA-R α4 subunit deletion abolishes tonic currents (Itonic) in cortical pyramidal cells and leads to a failure of MGE-IP transplantation to attenuate cortical seizure propagation. These observations should influence how the field proceeds with respect to the further development of therapeutic neuronal transplants (and possibly pharmacological treatments).

14.
Hippocampus ; 22(6): 1438-50, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22072552

ABSTRACT

Although cholecystokinin (CCK) has long been known to exert anxiogenic effects in both animal anxiety models and humans, the underlying cellular and molecular mechanisms are ill-defined. CCK interacts with CCK-1 and CCK-2 receptors resulting in up-regulation of phospholipase C (PLC) and protein kinase C (PKC). However, the roles of PLC and PKC in CCK-mediated anxiogenic effects have not been determined. We have shown previously that CCK facilitates glutamate release in the hippocampus especially at the synapses formed by the perforant path and dentate gyrus granule cells via activations of PLC and PKC. Here we further demonstrated that CCK enhanced NMDA receptor function in dentate gyrus granule cells via activation of PLC and PKC pathway. At the single-channel level, CCK increased NMDA single-channel open probability and mean open time, reduced the mean close time, and had no effects on the conductance of NMDA channels. Because elevation of glutamatergic functions results in anxiety, we explored the roles of PLC and PKC in CCK-induced anxiogenic actions using the Vogel Conflict Test (VCT). Our results from both pharmacological approach and knockout mice demonstrated that microinjection of CCK into the dentate gyrus concentration-dependently increased anxiety-like behavior via activation of PLC and PKC. Our results provide a novel unidentified signaling mechanism whereby CCK increases anxiety.


Subject(s)
Anxiety/chemically induced , Anxiety/enzymology , Cholecystokinin/administration & dosage , Protein Kinase C/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Type C Phospholipases/physiology , Animals , Cholecystokinin/physiology , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Activation/physiology , Female , Ion Channel Gating/physiology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Microinjections , Rats , Rats, Sprague-Dawley
15.
Toxicol Appl Pharmacol ; 253(3): 178-87, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21513724

ABSTRACT

Tungsten-alloy has carcinogenic potential as demonstrated by cancer development in rats with intramuscular implanted tungsten-alloy pellets. This suggests a potential involvement of epigenetic events previously implicated as environmental triggers of cancer. Here, we tested metal induced cytotoxicity and epigenetic modifications including H3 acetylation, H3-Ser10 phosphorylation and H3-K4 trimethylation. We exposed human embryonic kidney (HEK293), human neuroepithelioma (SKNMC), and mouse myoblast (C2C12) cultures for 1-day and hippocampal primary neuronal cultures for 1-week to 50-200 µg/ml of tungsten-alloy (91% tungsten/6% nickel/3% cobalt), tungsten, nickel, and cobalt. We also examined the potential role of intracellular calcium in metal mediated histone modifications by addition of calcium channel blockers/chelators to the metal solutions. Tungsten and its alloy showed cytotoxicity at concentrations > 50 µg/ml, while we found significant toxicity with cobalt and nickel for most tested concentrations. Diverse cell-specific toxic effects were observed, with C2C12 being relatively resistant to tungsten-alloy mediated toxic impact. Tungsten-alloy, but not tungsten, caused almost complete dephosphorylation of H3-Ser10 in C2C12 and hippocampal primary neuronal cultures with H3-hypoacetylation in C2C12. Dramatic H3-Ser10 dephosphorylation was found in all cobalt treated cultures with a decrease in H3 pan-acetylation in C2C12, SKNMC and HEK293. Trimethylation of H3-K4 was not affected. Both tungsten-alloy and cobalt mediated H3-Ser10 dephosphorylation were reversed with BAPTA-AM, highlighting the role of intracellular calcium, confirmed with 2-photon calcium imaging. In summary, our results for the first time reveal epigenetic modifications triggered by tungsten-alloy exposure in C2C12 and hippocampal primary neuronal cultures suggesting the underlying synergistic effects of tungsten, nickel and cobalt mediated by changes in intracellular calcium homeostasis and buffering.


Subject(s)
Alloys/toxicity , Epigenesis, Genetic , Tungsten/toxicity , Animals , Calcium Channels, L-Type/physiology , Cells, Cultured , Chelating Agents/pharmacology , Dose-Response Relationship, Drug , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , Histones/metabolism , Humans , Mice , Phosphorylation
16.
Article in English | MEDLINE | ID: mdl-22254864

ABSTRACT

In this paper, we used Recurrence Quantification Analysis (RQA) in order to study pre-epileptic characteristics in rat's EEG recordings. Four adult rats were used to collect epileptic EEG data in an experiment of animal model of epilepsy. Three RQA measures, recurrence rate, determinism, and entropy were calculated from EEG recordings from rats. A moving average filter was used to identify the decreasing trend in pre-epileptic dynamics which will be useful early detection of seizures.


Subject(s)
Electroencephalography/methods , Epilepsy/physiopathology , Animals , Disease Models, Animal , Rats , Rats, Sprague-Dawley
17.
J Sleep Res ; 19(1 Pt 2): 183-91, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19878449

ABSTRACT

Although the detailed mechanism of spontaneous generation and regulation of rapid eye movement sleep (REMS) is yet unknown, it has been reported that noradrenergic REM-OFF neurons in the locus coeruleus (LC) cease firing during REMS and, if they are kept active, REMS is significantly reduced. On the other hand, the activity as well as expression of Na-K ATPase has been shown to increase in the LC following REMS deprivation. Ouabain is a specific inhibitor of Na-K ATPase, and endogenous ouabain-like compounds are present in the brain. These findings led us to propose that a decrease in the level of ouabain-like compounds spontaneously available in and around the LC would stimulate and increase the REM-OFF neuronal activities in this region and thus would reduce REMS. To test this hypothesis, we generated anti-ouabain antibodies and then microinjected it bilaterally into the LC in freely moving chronically prepared rats and recorded electrophysiological signals for evaluation of sleep-wakefulness states; suitable control experiments were also conducted. Injection of anti-ouabain antibodies into the LC, but not into adjacent brain areas, significantly reduced percent REMS (mean +/- SEM) from 7.12 (+/-0.74) to 3.63 (+/-0.65). The decrease in REMS was due to reduction in the mean frequency of REMS episode, which is likely due to increased excitation of the LC REM-OFF neurons. Control microinjections of normal IgG did not elicit this effect. These results support our hypothesis that interactions of naturally available endogenous ouabain-like compounds with the Na-K ATPase in the LC modulate spontaneous REMS.


Subject(s)
Locus Coeruleus/metabolism , Ouabain/analogs & derivatives , Ouabain/metabolism , Sleep, REM/physiology , Animals , Electrodes, Implanted , Electroencephalography , Electromyography , Electrooculography , Immunoglobulin G/administration & dosage , Immunoglobulin G/pharmacology , Injections, Intramuscular , Injections, Subcutaneous , Locus Coeruleus/drug effects , Male , Microinjections , Ouabain/immunology , Proteins/metabolism , Rats , Rats, Wistar , Sleep, REM/drug effects , ATPase Inhibitory Protein
18.
J Sleep Res ; 18(3): 349-56, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19552734

ABSTRACT

Prolonged rapid eye movement sleep deprivation (REMSD) causes hypothermia and death; however, the effect of deprivation within 24 h and its mechanism(s) of action were unknown. Based on existing reports we argued that REMSD should, at least initially, induce hyperthermia and the death upon prolonged deprivation could be due to persistent hypothermia. We proposed that noradrenaline (NA), which modulates body temperature and is increased upon REMSD, may be involved in REMSD- associated body temperature changes. Adult male Wistar rats were REM sleep deprived for 6-9 days by the classical flower pot method; suitable free moving, large platform and recovery controls were carried out. The rectal temperature (Trec) was recorded every minute for 1 h, or once daily, or before and after i.p. injection of prazosin, an alpha-1 adrenergic antagonist. The Trec was indeed elevated within 24 h of REMSD which decreased steadily, despite continuation of deprivation. Prazosin injection into the deprived rats reduced the Trec within 30 min, and the duration of effect was comparable to its pharmacological half life. The findings have been explained on the basis of REMSD-induced elevated NA level, which has opposite actions on the peripheral and the central nervous systems. We propose that REMSD-associated immediate increase in Trec is due to increased Na-K ATPase as well as metabolic activities and peripheral vasoconstriction. However, upon prolonged deprivation, probably the persistent effect of NA on the central thermoregulatory sites induced sustained hypothermia, which if remained uncontrolled, results in death. Thus, our findings suggest that peripheral prazosin injection in REMSD would not bring the body temperature to normal, rather might become counterproductive.


Subject(s)
Adrenergic alpha-Antagonists/pharmacology , Body Temperature Regulation/drug effects , Prazosin/pharmacology , Sleep Deprivation/physiopathology , Sleep, REM/drug effects , Animals , Body Temperature Regulation/physiology , Injections, Intraperitoneal , Male , Norepinephrine/blood , Rats , Rats, Wistar , Sleep, REM/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...