Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Theriogenology ; 72(1): 81-90, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19329173

ABSTRACT

Characteristics predictive of a 2-wave versus 3-wave pattern of ovarian follicular development during the interovulatory interval (IOI) were examined by ultrasonographic monitoring of 91 IOIs from 31 beef heifers. Repeatability of the wave pattern within individuals and the effects of season and age were determined using a subset of 75 IOIs from 15 heifers examined for multiple IOIs. The 2-wave pattern was detected in 62 of 91 (68%) IOIs, and the 3-wave pattern was detected in 29 of 91 (32%) IOIs. The preponderance of the 2-wave versus 3-wave pattern (P<0.05) was not influenced by season (P=0.61) but was even greater in the more mature age group (P=0.02). The majority of IOIs or=22 d was of the 3-wave pattern (78%; P<0.05). The proportion of nonalternating patterns (repeatability) was more than twofold greater than the proportion of alternating patterns (70% vs. 30%; P<0.01). This relationship was consistent among seasons (P<0.01) and even more marked in the more mature age group (P=0.01). Emergence and follicular dominance of Wave 2 were delayed (P<0.01), and the onset of corpus luteum regression was earlier (P<0.01) in 2-wave versus 3-wave IOI. In conclusion, the duration of the IOI was predictive of the wave pattern, and the pattern was repeatable within individuals. Factors influencing the period of follicular dominance of Wave 1 in 2-wave versus 3-wave IOI may be responsible for regulating the wave pattern and may be associated with heifer maturity or relative nutritional demand during the postpubertal period. The impact of greater follicular attrition recorded in 3-wave versus 2-wave IOI on ovarian depletion and reproductive senescence is worthy of critical evaluation.


Subject(s)
Cattle/physiology , Estrous Cycle/physiology , Ovarian Follicle/growth & development , Aging , Animals , Female , Luteolysis/physiology , Ovarian Follicle/diagnostic imaging , Ovulation/physiology , Sexual Maturation , Time Factors , Ultrasonography
2.
Biol Reprod ; 71(4): 1244-51, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15189825

ABSTRACT

The study was designed to characterize the developmental pattern of 1- to 3-mm follicles and to determine the stage at which the future dominant follicle first attains a size advantage among its cohorts. In experiment 1, heifers (n = 18) were examined every 24 h by transrectal ultrasonography for one interovulatory interval (IOI). In experiment 2, cows (n = 9) were examined every 6 h from 5 to 13 days after ovulation to monitor precisely the diameter changes of individual follicles >/=1 mm during emergence of wave 2. Results revealed a change over days (P < 0.05) in the number of 1- to 3-mm follicles, with a maximum (P < 0.05) 1 or 2 days before wave emergence (conventionally defined as the time when the dominant follicle is first detected at 4 mm), followed 3-4 days later by a maximum (P < 0.05) in the number of >/=4-mm follicles. The profiles of small (1-3 mm) and large (>/=4-mm) follicles were inversely proportional (r = -0.79; P = 0.01). The profile of the number of 1- to 3-mm follicles during wave emergence was similar (P = 0.63) between waves in two-wave IOI, but differed (P < 0.01) among waves in three-wave IOI as a result of a greater number of follicles in the ovulatory wave (P < 0.04). As well, the number of follicles in the ovulatory wave tended to be greater (P < 0.06) in three-wave IOI than in two-wave IOI. The future dominant follicle was first identified at a diameter of 1 mm and emerged 6-12 h earlier than the first subordinate follicle (P < 0.01). After detection of the dominant follicle at 1 mm (0 h), its diameter differed from that of the first and second subordinate follicles at 24 h (P = 0.04) and 12 h (P = 0.01), when the dominant follicle was 2.4 +/- 0.17 mm and 1.7 +/- 0.14 mm, respectively. The growth rate of the dominant follicle differed from that of the first and second subordinate follicles at 120 h (P = 0.03) and 108 h (P = 0.02), when the dominant follicle was 9.5 +/- 0.30 mm and 8.8 +/- 0.49 mm, respectively. Emergence of the future dominant (r = 0.71), first (r = 0.73), and second (r = 0.76) subordinate follicles was temporally associated (P < 0.01) with a rise in circulating concentrations of FSH. Transient, nocturnal elevations in plasma FSH concentration were followed within 6 h by an increase in the growth rate of 1- to 3-mm follicles. We conclude that 1) 1- to 3-mm follicles develop in a wave-like manner in association with surges in plasma concentrations of FSH, 2) 1- to 3-mm follicles are exquisitely responsive to transient elevations in FSH, and 3) selection of the dominant follicle is manifest earlier than previously documented and is characterized by a hierarchical progression over a period encompassing the entire FSH surge (5 days).


Subject(s)
Cattle/physiology , Follicle Stimulating Hormone/blood , Ovarian Follicle/cytology , Ovarian Follicle/physiology , Animals , Estrous Cycle/physiology , Female , Organ Size , Ovarian Follicle/diagnostic imaging , Periodicity , Ultrasonography/veterinary
3.
Theriogenology ; 50(4): 637-49, 1998 Sep.
Article in English | MEDLINE | ID: mdl-10732154

ABSTRACT

This study was designed to ascertain the rate of transport and development of preimplantation embryo in the superovulated buffalo in order to determine the optimum time for their nonsurgical collection. Eighteen Murrah-type buffalo were superovulated with 600 mg NIH-FSH-P1. Luteolysis was induced by administration of PGF2 alpha at 72 (PG + 72) and 84 h (PG + 84) after initiating gonadotrophin treatment and fixed-time AI was done beginning at 36 h post PG + 72 administration and at 12-h intervals thereafter, upto 72 h. Six control buffalo received treatment similar to experimental group except that in place of FSH they received normal saline. For embryo collection, experimental animals were humanely killed at 6-h intervals corresponding to 156 (n = 2), 162 (n = 2), 168 (n = 2), 174 (n = 3), 180 (n = 3), 186 (n = 3) and 192 h(n = 3) after PG + 72 treatment, whereas the control animals were humanely killed at 156 (n = 2), 174 (n = 2) and 192 h (n = 2). Superovulated buffalo had higher number of ovulations than untreated controls (8.78 +/- 5.00 vs 0.67 +/- 0.51) and total ova/embryos recovered was 4.11 +/- 2.46 and 0.67 +/- 0.51, respectively. The high estradiol-17 beta (E2) levels with its prolonged rise may, by leading to reverse peristalsis in the oviduct with a consequent loss of some embryos in the peritoneal cavity, be one of the reasons for our inability to recover nearly 84/158 ova/embryos in the superovulated buffalo. In superovulated animals, nearly all the ova/embryos reached the uterus between 168 and 174 h post PG + 72 treatment or about 134 h (circa 5.5 d) after the onset of superovulatory estrus, suggesting that the ideal time for non-surgical embryo collection in the buffalo is between Days 7 to 8 after PG + 72 treatment or Days 5.5 to 6.0 of the superovulated cycle (estrus = Day 0). Embryo development of superovulated buffalo showed considerable variation as various stages of embryos (8 cell to expanded blastocyst) were recovered from the same donor buffalo, and the rate of development appeared to be 24 to 36 h faster than in cattle.


Subject(s)
Buffaloes/embryology , Embryonic Development , Embryonic and Fetal Development , Ovum Transport , Superovulation , Animals , Dinoprost/pharmacology , Estradiol/blood , Female , Pregnancy , Progesterone/blood
4.
Theriogenology ; 39(5): 1187-92, 1993 May.
Article in English | MEDLINE | ID: mdl-16727286

ABSTRACT

A total of 141 embryos was recovered by nonsurgical flushing of the uterus of 31 superovulated buffalo. A total of 66 good quality embryos (Grade I and Grade II) was frozen using 1.4 M glycerol. Forty-two of the frozen embryos were thawed randomly over a 1-year period, and a total of 39 embryos (Grades I, II or III post thaw) were transferred into an equal number of estrus synchronized recipients. Of 11 confirmed pregnancies, 9 calves were born live.

SELECTION OF CITATIONS
SEARCH DETAIL
...