Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 11(1): 14841, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34290299

ABSTRACT

High-grade serous ovarian cancers (HGSOC) represent the most common subtype of ovarian malignancies. Due to the frequency of late-stage diagnosis and high rates of recurrence following standard of care treatments, novel therapies are needed to promote durable responses. We investigated the anti-tumor activity of CD3 T cell engaging bispecific antibodies (TCBs) directed against the PAX8 lineage-driven HGSOC tumor antigen LYPD1 and demonstrated that anti-LYPD1 TCBs induce T cell activation and promote in vivo tumor growth inhibition in LYPD1-expressing HGSOC. To selectively target LYPD1-expressing tumor cells with high expression while sparing cells with low expression, we coupled bivalent low-affinity anti-LYPD1 antigen-binding fragments (Fabs) with the anti-CD3 scFv. In contrast to the monovalent anti-LYPD1 high-affinity TCB (VHP354), the bivalent low-affinity anti-LYPD1 TCB (QZC131) demonstrated antigen density-dependent selectivity and showed tolerability in cynomolgus monkeys at the maximum dose tested of 3 mg/kg. Collectively, these data demonstrate that bivalent TCBs directed against LYPD1 have compelling efficacy and safety profiles to support its use as a treatment for high-grade serous ovarian cancers.


Subject(s)
Antibodies, Bispecific/therapeutic use , Immunotherapy/methods , Ovarian Neoplasms/pathology , Ovarian Neoplasms/therapy , PAX8 Transcription Factor/immunology , T-Lymphocytes/immunology , Tumor Suppressor Proteins/immunology , Animals , CD3 Complex/immunology , Female , GPI-Linked Proteins/immunology , Macaca fascicularis , Mice , Neoplasm Grading , Xenograft Model Antitumor Assays
2.
Nat Immunol ; 21(3): 274-286, 2020 03.
Article in English | MEDLINE | ID: mdl-32066947

ABSTRACT

Human immunodeficiency virus 1 (HIV-1) infection is associated with heightened inflammation and excess risk of cardiovascular disease, cancer and other complications. These pathologies persist despite antiretroviral therapy. In two independent cohorts, we found that innate lymphoid cells (ILCs) were depleted in the blood and gut of people with HIV-1, even with effective antiretroviral therapy. ILC depletion was associated with neutrophil infiltration of the gut lamina propria, type 1 interferon activation, increased microbial translocation and natural killer (NK) cell skewing towards an inflammatory state, with chromatin structure and phenotype typical of WNT transcription factor TCF7-dependent memory T cells. Cytokines that are elevated during acute HIV-1 infection reproduced the ILC and NK cell abnormalities ex vivo. These results show that inflammatory cytokines associated with HIV-1 infection irreversibly disrupt ILCs. This results in loss of gut epithelial integrity, microbial translocation and memory NK cells with heightened inflammatory potential, and explains the chronic inflammation in people with HIV-1.


Subject(s)
Cytokines/blood , HIV-1/immunology , HIV-1/pathogenicity , Immunity, Innate , Killer Cells, Natural/immunology , Lymphocytes/immunology , T Cell Transcription Factor 1/immunology , Gene Expression Regulation , HIV Infections/genetics , HIV Infections/immunology , HIV Infections/virology , Homeostasis/immunology , Humans , Immunologic Memory , In Vitro Techniques , Inflammation/genetics , Inflammation/immunology , Inflammation/virology , T Cell Transcription Factor 1/genetics , Wnt Signaling Pathway/immunology
3.
J Immunol ; 202(3): 799-804, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30593536

ABSTRACT

Broadly neutralizing, anti-HIV-1 gp120 mAbs have been isolated from infected individuals, and there is considerable interest in developing these reagents for Ab-based immunoprophylaxis and treatment. As a means to identify potentially new anti-HIV Abs, we exploited humanized NOD-scid IL2rγnull mice systemically infected with HIV-1 to generate a wide variety of Ag-specific human mAbs. The Abs were encoded by a diverse range of variable gene families and Ig classes, including IgA, and several showed significant levels of somatic mutation. Moreover, the isolated Abs not only bound target Ags with similar affinity as broadly neutralizing Abs, they also demonstrated neutralizing ability against multiple HIV-1 clades. The use of humanized mice will allow us to use our knowledge of HIV-1 gp120 structure and function, and the immune response targeting this protein, to generate native human prophylactic Abs to reduce the infection and spread of HIV-1.


Subject(s)
Antibodies, Monoclonal, Humanized/genetics , HIV Antibodies/genetics , HIV Envelope Protein gp120/immunology , HIV-1/immunology , Animals , Animals, Genetically Modified , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/immunology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Neutralization Tests
4.
Exp Biol Med (Maywood) ; 240(1): 67-78, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25125497

ABSTRACT

The development of small animal models that elicit human immune responses to dengue virus (DENV) is important since prior immunity is a major risk factor for developing severe dengue disease. This study evaluated anti-DENV human antibody (hAb) responses generated from immortalized B cells after DENV-2 infection in NOD-scid IL2rγ(null) mice that were co-transplanted with human fetal thymus and liver tissues (BLT-NSG mice). DENV-specific human antibodies predominantly of the IgM isotype were isolated during acute infection and in convalescence. We found that while a few hAbs recognized the envelope protein produced as a soluble recombinant, a number of hAbs only recognized epitopes on intact virions. The majority of the hAbs isolated during acute infection and in immune mice were serotype-cross-reactive and poorly neutralizing. Viral titers in immune BLT-NSG mice were significantly decreased after challenge with a clinical strain of dengue. DENV-specific hAbs generated in BLT-NSG mice share some of the characteristics of Abs isolated in humans with natural infection. Humanized BLT-NSG mice provide an attractive preclinical platform to assess the immunogenicity of candidate dengue vaccines.


Subject(s)
Antibodies, Viral/blood , B-Lymphocytes/immunology , Dengue Virus/immunology , Immunoglobulin M/blood , Animals , Antibodies, Neutralizing/blood , Dengue/immunology , Dengue/virology , Disease Models, Animal , Humans , Liver/immunology , Mice , Mice, SCID , Mice, Transgenic , Thymus Gland/immunology , Viral Load
5.
Viral Immunol ; 25(5): 348-59, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22934599

ABSTRACT

Dengue, caused by the four serotypes of dengue virus (DENV), represents an expanding global health challenge. The potential for serotype-cross-reactive antibodies to exacerbate disease during a secondary infection with a heterologous DENV serotype has driven efforts to study human DENV-specific antibodies. Most DENV-specific antibodies generated in humans are serotype-cross-reactive, weakly neutralizing, and directed against the immature pre-membrane (prM), envelope (E), and nonstructural 1 (NS1) proteins. To broaden the characterization of human DENV-specific antibodies, we assessed B-cell responses by ELISpot assays and isolated B cells from the peripheral blood of a human subject with previous DENV infection. Forty-eight human IgG monoclonal antibodies (hMAbs) were initially characterized by their potential to bind to an inactivated lysate of DENV-infected cells. Subsequently, most DENV-specific hMAbs were found to bind soluble, recombinant E protein (rE). Two hMAbs were unable to bind rE, despite strongly binding to the DENV-infected cell lysate. Further analyses showed that these two hMAbs bound conformation-dependent, reduction-sensitive epitopes on E protein. These data shed light on the breadth of DENV-specific hMAbs generated within a single immune donor.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens, Viral/immunology , B-Lymphocytes/immunology , Dengue Virus/immunology , Dengue/immunology , Immunologic Memory , Antibodies, Neutralizing/immunology , Dengue/virology , Humans , Viral Envelope Proteins/immunology , Viral Nonstructural Proteins/immunology
6.
Immunology ; 136(3): 334-43, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22384859

ABSTRACT

Dengue is a mosquito-borne viral disease of humans, and animal models that recapitulate human immune responses or dengue pathogenesis are needed to understand the pathogenesis of the disease. We recently described an animal model for dengue virus (DENV) infection using humanized NOD-scid IL2rγ(null) mice (NSG) engrafted with cord blood haematopoietic stem cells. We sought to further improve this model by co-transplantation of human fetal thymus and liver tissues into NSG (BLT-NSG) mice. Enhanced DENV-specific antibody titres were found in the sera of BLT-NSG mice compared with human cord blood haematopoietic stem cell-engrafted NSG mice. Furthermore, B cells generated during the acute phase and in memory from splenocytes of immunized BLT-NSG mice secreted DENV-specific IgM antibodies with neutralizing activity. Human T cells in engrafted BLT-NSG mice secreted interferon-γ in response to overlapping DENV peptide pools and HLA-A2 restricted peptides. The BLT-NSG mice will allow assessment of human immune responses to DENV vaccines and the effects of previous immunity on subsequent DENV infections.


Subject(s)
Dengue Virus/immunology , HLA-A2 Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/virology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody Specificity , B-Lymphocytes/immunology , B-Lymphocytes/virology , Base Sequence , Dengue/immunology , Dengue/prevention & control , Dengue/virology , Dengue Vaccines/immunology , Dengue Virus/genetics , Fetal Tissue Transplantation , Humans , Immunity, Humoral , Interferon-gamma/biosynthesis , Liver Transplantation , Mice , Mice, Inbred NOD , Mice, SCID , RNA, Viral/blood , RNA, Viral/genetics , Thymus Gland/transplantation , Viral Load
7.
J Infect Dis ; 204(10): 1514-22, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21930609

ABSTRACT

Low-avidity serotype-cross-reactive antibodies are hypothesized to play a key role in triggering severe disease in patients with secondary dengue virus (DENV) infection. However, there is little systematic information about the frequency, avidity, and cross-reactivity of DENV-specific B cells in individuals experiencing primary instead of secondary infection. We compared DENV-specific B-cell responses in a cohort of Thai children with primary or secondary DENV infection. B cells specific for DENV precursor membrane protein, envelope (E) protein, and nonstructural protein 1 were detectable in immune peripheral blood mononuclear cells with the highest frequencies of DENV E-specific B cells detected in patients experiencing primary DENV-1 infections. DENV E-specific B cells were highly serotype-specific after primary DENV infections, whereas most E-specific B cells in patients with secondary infection were serotype-cross-reactive and secreted antibodies with higher avidity to heterologous DENV serotypes. Our data suggest that the minor populations of serotype-cross-reactive B cells generated by primary DENV infection are preferentially expanded during secondary DENV infection.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/immunology , B-Lymphocytes/immunology , Dengue Virus/immunology , Dengue/immunology , Adolescent , Antibodies, Viral/immunology , B-Lymphocytes/metabolism , Child , Child, Preschool , Cohort Studies , Cross Reactions , Dengue Virus/classification , Enzyme-Linked Immunosorbent Assay , Enzyme-Linked Immunospot Assay , Hemagglutination Inhibition Tests , Humans , Infant , Serotyping , Thailand , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism , Viral Nonstructural Proteins/immunology
8.
Viral Immunol ; 23(5): 477-85, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20883162

ABSTRACT

Cytotoxic T lymphocytes (CTL) are hypothesized to play a role in clearance during primary dengue virus (DENV) infections, and contribute to immunopathology during secondary heterologous infections in humans. We previously reported skewed T-cell responses to secondary DENV infection in BALB/c (H-2(d)) mice, reproducing characteristics of human DENV infection. To set the stage for using widely available transgenic and knockout mice, we extended these studies to identify DENV-specific T-cell responses in C57BL/6 (H-2(b)) mice. We identified dominant CD8+ T-cell responses to H-2D(b)-restricted epitopes on the DENV NS4a (aa 249-265) and NS5 (aa 521-537) proteins. High frequencies of IFN-γ- and TNF-α-producing T cells directed at both epitopes were detected following primary infection with all four DENV serotypes, and were augmented by secondary DENV infections. In vivo cytotoxicity assays demonstrated rapid clearance of target cells pulsed with the NS4a peptide; in contrast, NS5 peptide-pulsed target cells were poorly cleared in vivo. These data characterize two H-2(b)-restricted T-cell epitopes displaying divergent in vivo function. These results should facilitate further studies of the in vivo effects of DENV-specific T cells, including the use of genetically modified mouse strains.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dengue Virus/immunology , Dengue/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Cytotoxicity Tests, Immunologic , Epitopes, T-Lymphocyte/immunology , H-2 Antigens/immunology , Histocompatibility Antigen H-2D , Interferon-gamma/metabolism , Mice , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/metabolism , Viral Nonstructural Proteins/immunology
9.
PLoS One ; 4(10): e7251, 2009 Oct 05.
Article in English | MEDLINE | ID: mdl-19802382

ABSTRACT

BACKGROUND: The lack of a suitable animal model to study viral and immunological mechanisms of human dengue disease has been a deterrent to dengue research. METHODOLOGY/PRINCIPAL FINDINGS: We sought to establish an animal model for dengue virus (DENV) infection and immunity using non-obese diabetic/severe combined immunodeficiency interleukin-2 receptor gamma-chain knockout (NOD-scid IL2rgamma(null)) mice engrafted with human hematopoietic stem cells. Human CD45(+) cells in the bone marrow of engrafted mice were susceptible to in vitro infection using low passage clinical and established strains of DENV. Engrafted mice were infected with DENV type 2 by different routes and at multiple time points post infection, we detected DENV antigen and RNA in the sera, bone marrow, spleen and liver of infected engrafted mice. Anti-dengue IgM antibodies directed against the envelope protein of DENV peaked in the sera of mice at 1 week post infection. Human T cells that developed following engraftment of HLA-A2 transgenic NOD-scid IL2rgamma(null) mice with HLA-A2(+) human cord blood hematopoietic stem cells, were able to secrete IFN-gamma, IL-2 and TNF-alpha in response to stimulation with three previously identified A2 restricted dengue peptides NS4b 2353((111-119)), NS4b 2423((181-189)), and NS4a 2148((56-64)). CONCLUSIONS/SIGNIFICANCE: This is the first study to demonstrate infection of human cells and functional DENV-specific T cell responses in DENV-infected humanized mice. Overall, these mice should be a valuable tool to study the role of prior immunity on subsequent DENV infections.


Subject(s)
Dengue Virus/immunology , Fetal Blood/virology , HLA-A2 Antigen/immunology , Hematopoiesis , Hematopoietic Stem Cells/virology , Interleukin-2/immunology , Mice, SCID/immunology , Animals , Dengue/immunology , Fetal Blood/cytology , Hematopoietic Stem Cells/cytology , Humans , Mice , Mice, Inbred NOD , Mice, Knockout , Peptides/chemistry , RNA/metabolism
10.
Protein Expr Purif ; 33(1): 80-91, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14680965

ABSTRACT

Dengue virus infection poses a serious global public health threat for which there is currently no therapy or a licensed vaccine. The domain III of the dengue virus encoded envelope protein, which carries multiple conformation-dependent neutralizing epitopes, is critical for virus infectivity. We have expressed and purified recombinant domain III of dengue virus type-2 envelope, without the aid of a carrier protein in Escherichia coli. A 6x His tag was inserted at the N terminus to facilitate its one-step purification. The protein was overexpressed in the form of insoluble inclusion bodies, which were solubilized under highly denaturing conditions and then subjected to a previously optimized arginine-mediated renaturation protocol. We purified recombinant domain III protein to near homogeneity by Ni-NTA affinity chromatography and obtained yields of approximately 30 mg/L. The purified protein was recognized in Western analyses by monoclonal antibodies specific for the 6x His tag as well as the 3H5 neutralizing epitope known to reside in domain III. The authenticity of the recombinant protein was also verified in a sandwich ELISA designed to specifically and simultaneously identify the 6x His tag and the 3H5 epitope. In addition, murine and human polyclonal sera also recognized the recombinant protein. The in vitro refolded recombinant protein preparation was biologically functional. It could effectively protect cells in culture against dengue virus type-2 infection, apparently by blocking the virus from binding to host cells. This expression/purification strategy has the potential for inexpensive scale-up and may prove to be useful for dengue diagnostics and vaccine development efforts.


Subject(s)
Dengue Virus/chemistry , Viral Envelope Proteins/biosynthesis , Viral Envelope Proteins/chemistry , Animals , Arginine/chemistry , Blotting, Western , Cell Line , Chromatography, Affinity/methods , Cricetinae , Dengue Virus/genetics , Dengue Virus/metabolism , Dengue Virus/pathogenicity , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Escherichia coli/metabolism , Guanidine/chemistry , Plasmids/genetics , Protein Renaturation , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Viral Envelope Proteins/genetics , Viral Envelope Proteins/isolation & purification , Viral Plaque Assay/methods
11.
J Virol ; 77(23): 12907-13, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14610213

ABSTRACT

A recombinant replication-defective adenovirus vector that can overexpress the ectodomain of the envelope protein of dengue virus type 2 (NGC strain) has been constructed. This virus was immunogenic in mice and elicited dengue virus type 2 specific B- and T-cell responses. Sera from immunized mice contained neutralizing antibodies that could specifically recognize dengue virus type 2 and neutralize its infectivity in vitro, indicating that this approach has the potential to confer protective immunity. In vitro stimulation of splenocytes (from immunized mice) with dengue virus type 2 resulted in a significant proliferative response accompanied by the production of high levels of gamma interferon but did not show significant changes in interleukin-4 levels. This is suggestive of a Th1-like response (considered to be important in the maturation of cytotoxic T lymphocytes that are essential for the elimination of virus-infected cells). The data show that adenovirus vectors offer a promising alternative strategy for the development of dengue virus vaccines.


Subject(s)
Adenoviridae/immunology , Defective Viruses/immunology , Dengue Virus/immunology , Genetic Vectors , Adenoviridae/genetics , Adenoviridae/physiology , Animals , Antibodies, Viral/biosynthesis , Cell Line , Cricetinae , Defective Viruses/genetics , Defective Viruses/physiology , Electrophoresis, Polyacrylamide Gel , Humans , Interferon-gamma/biosynthesis , Interleukin-4/biosynthesis , Mice , Neutralization Tests , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...