Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 34(36)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37290406

ABSTRACT

ZnO is a widely studied gas sensor material and is used in many commercial sensor devices. However, selectivity towards any particular gas remains an issue due to lack of complete knowledge of the gas sensing mechanism of oxide surfaces. In this paper, we have studied the frequency dependent gas sensor response of ZnO nanoparticles of a diameter of nearly 30 nm. A small rise of synthesis temperature from 85 °C to 95 °C in the solvothermal process, shows coarsening by joining and thereby distinct loss of grain boundaries as seen from transmission electron micrographs. This leads to a substantial reduction in impedance, Z (GΩ to MΩ), and rises in resonance frequencyfres(from 1 to 10 Hz) at room temperature. From temperature dependent studies it is observed that the grain boundaries show a Correlated Barrier Hopping mechanism of transport and the hopping range in the grain boundary region is typically 1 nm with a hopping energy of 153 meV. On the other hand, within the grain, it shows a change of transport type from low temperature tunneling to beyond 300 °C as polaron hopping. The presence of disorder (defects) as the hopping sites. The temperature dependence offresagrees with different predicted oxygen chemisorbed species between 200 °C to 400 °C. As opposed to the traditional DC response, the AC response in the imaginary part of (Z″) shows gas specific resonance frequencies for each gas, such as NO2, ethanol, and H2. Among the two reducing gases, ethanol and hydrogen; the former shows good dependence on concentration in Z″ whereas the latter shows a good response infresas well as capacitance. Thus, the results of frequency dependent response allow us to investigate greater details of the gas sensing mechanism in ZnO, which may be exploited for selective gas sensing.

2.
Phys Chem Chem Phys ; 19(19): 12282-12295, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28451661

ABSTRACT

We report on the observation of double transition - a first order and a second order transition in Gd5Si2-xCoxGe2 with x = 0, 0.1, 0.2 and 0.4 with the appearance of short-range ferromagnetic correlations. The first order phase transition is due to a combined magnetostructural transition from monoclinic paramagnetic phase to orthorhombic ferromagnetic phase on cooling while the second order transition arises from an orthorhombic paramagnetic to ferromagnetic phase on cooling. Structural studies show that the substituted compounds crystallize in a combination of Gd5Si2Ge2 and Gd5Si4 phases. Low-temperature X-ray diffraction measurements confirm the complete transformation from monoclinic to orthorhombic phase. DC magnetization measurements reveal an anomalous low field magnetic behaviour indicating a Griffiths-like phase. This unusual behaviour is attributed to the local disorder within the crystallographic structure indicating the presence of short-range magnetic correlations and ferromagnetic clustering, which is stabilized and enhanced by competing intra-layer and inter-layer magnetic interactions. The magnetostructural transition results in entropy changes (-ΔSM) of 9 J kg-1 K-1 at 260 K for x = 0.1, 8.5 J kg-1 K-1 at 245 K for x = 0.2 and 4.2 J kg-1 K-1 at 210 K for x = 0.4 for a field change of 50 kOe. Co substitution induces compelling crystallographic and magnetoresponsive effects in the Gd-Si-Ge system, which could be useful for potential and smart applications such as solid-state magnetic refrigeration and sensitive magnetic switching from paramagnetic to ferromagnetic state. Universal curve analysis has been carried out on the substituted samples to study the order of the magnetic transition.

3.
Phys Rev Lett ; 104(3): 037204, 2010 Jan 22.
Article in English | MEDLINE | ID: mdl-20366679

ABSTRACT

We show that low field magnetoelectric (ME) properties of helimagnets Ba0.5Sr1.5Zn2(Fe1-xAlx)12O22 can be efficiently tailored by the Al-substitution level. As x increases, the critical magnetic field for switching electric polarization is systematically reduced from approximately 1 T down to approximately 1 mT, and the ME susceptibility is greatly enhanced to reach a giant value of 2.0x10{4} ps/m at an optimum x=0.08. We find that control of the nontrivial orbital moment in the octahedral Fe sites through the Al substitution is crucial for fine-tuning the magnetic anisotropy and obtaining the conspicuously improved ME characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL
...