Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Lung Cancer ; 164: 23-32, 2022 02.
Article in English | MEDLINE | ID: mdl-34974222

ABSTRACT

OBJECTIVES: Topoisomerase 1 (TOP1) is a drug target used in anticancer treatment of various cancer types. The effect of the TOP1 drugs can be counteracted by the enzymatic activity of tyrosyl-DNA phosphodiesterase 1 (TDP1). Thus, to elucidate the relevance of combining TDP1 and TOP1 as drug targets for anticancer treatment in NSCLC, TDP1 and TOP1 was for the first time quantified in a large cohort of paired normal and tumor tissue from NSCLC patients, and data were correlated between the two enzymes and to clinical data. MATERIALS AND METHODS: TDP1 and TOP1 activity and protein concentration were measured in paired normal and tumor tissue from 150 NSCLC patients using TDP1 and TOP1 specific biosensors and ELISA. TDP1 and TOP1 activity and protein concentration were correlated to clinical data. RESULTS: TDP1 and TOP1 activity and protein concentration were significantly upregulated from normal to tumor tissue for the individual patients, but did not correlate to any of the clinical data. TDP1 and TOP1 activity were upregulated in 89.3% and 82.7% of the patients, respectively, and correlated in both normal and tumor tissue. The same tendency was observed for protein concentration with an upregulation of TDP1 and TOP1 in 73.0% and 84.4% of the patients, respectively. The activity and protein concentration correlated in normal and tumor tissue for both TDP1 and TOP1. CONCLUSION: The upregulations of TDP1 and TOP1 from normal to tumor tissue combined with the observation that TDP1 and TOP1 did not correlate to any of the clinical data indicate that both proteins are important for development or maintenance of the tumor cells in NSCLC. Correlations between TDP1 and TOP1 indicate a biological dependency and potential co-regulation of the enzymes. These observations is encouraging in relation to using TOP1 and TDP1 as targets in anticancer treatment of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , DNA Topoisomerases, Type I , Humans , Lung Neoplasms/drug therapy , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism
2.
Sensors (Basel) ; 21(14)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34300575

ABSTRACT

DNA sensors can be used as robust tools for high-throughput drug screening of small molecules with the potential to inhibit specific enzymes. As enzymes work in complex biological pathways, it is important to screen for both desired and undesired inhibitory effects. We here report a screening system utilizing specific sensors for tyrosyl-DNA phosphodiesterase 1 (TDP1) and topoisomerase 1 (TOP1) activity to screen in vitro for drugs inhibiting TDP1 without affecting TOP1. As the main function of TDP1 is repair of TOP1 cleavage-induced DNA damage, inhibition of TOP1 cleavage could thus reduce the biological effect of the TDP1 drugs. We identified three new drug candidates of the 1,5-naphthyridine and 1,2,3,4-tetrahydroquinolinylphosphine sulfide families. All three TDP1 inhibitors had no effect on TOP1 activity and acted synergistically with the TOP1 poison SN-38 to increase the amount of TOP1 cleavage-induced DNA damage. Further, they promoted cell death even with low dose SN-38, thereby establishing two new classes of TDP1 inhibitors with clinical potential. Thus, we here report a dual-sensor screening approach for in vitro selection of TDP1 drugs and three new TDP1 drug candidates that act synergistically with TOP1 poisons.


Subject(s)
DNA Topoisomerases, Type I , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases , DNA , DNA Damage , DNA Topoisomerases, Type I/metabolism , High-Throughput Screening Assays , Humans , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism
3.
BMC Cancer ; 19(1): 1158, 2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31783818

ABSTRACT

BACKGROUND: Camptothecin (CPT) and its derivatives are currently used as second- or third-line treatment for patients with endocrine-resistant breast cancer (BC). These drugs convert nuclear enzyme DNA topoisomerase I (TOP1) to a cell poison with the potential to damage DNA by increasing the half-life of TOP1-DNA cleavage complexes (TOP1cc), ultimately resulting in cell death. In small and non-randomized trials for BC, researchers have observed extensive variation in CPT response rates, ranging from 14 to 64%. This variability may be due to the absence of reliable selective parameters for patient stratification. BC cell lines may serve as feasible models for generation of functional criteria that may be used to predict drug sensitivity for patient stratification and, thus, lead to more appropriate applications of CPT in clinical trials. However, no study published to date has included a comparison of multiple relevant parameters and CPT response across cell lines corresponding to specific BC subtypes. METHOD: We evaluated the levels and possible associations of seven parameters including the status of the TOP1 gene (i.e. amplification), TOP1 protein expression level, TOP1 activity and CPT susceptibility, activity of the tyrosyl-DNA phosphodiesterase 1 (TDP1), the cellular CPT response and the cellular growth rate across a representative panel of BC cell lines, which exemplifies three major BC subtypes: Luminal, HER2 and TNBC. RESULTS: In all BC cell lines analyzed (without regard to subtype classification), we observed a significant overall correlation between growth rate and CPT response. In cell lines derived from Luminal and HER2 subtypes, we observed a correlation between TOP1 gene copy number, TOP1 activity, and CPT response, although the data were too limited for statistical analyses. In cell lines representing Luminal and TNBC subtypes, we observed a direct correlation between TOP1 protein abundancy and levels of enzymatic activity. In all three subtypes (Luminal, HER2, and TNBC), TOP1 exhibits approximately the same susceptibility to CPT. Of the three subtypes examined, the TNBC-like cell lines exhibited the highest CPT sensitivity and were characterized by the fastest growth rate. This indicates that breast tumors belonging to the TNBC subtype, may benefit from treatment with CPT derivatives. CONCLUSION: TOP1 activity is not a marker for CPT sensitivity in breast cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/enzymology , Camptothecin/pharmacology , DNA Topoisomerases, Type I/metabolism , Drug Resistance, Neoplasm/drug effects , Topoisomerase I Inhibitors/pharmacology , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA Topoisomerases, Type I/genetics , Female , Gene Dosage , Gene Expression , Humans , Phosphoric Diester Hydrolases/metabolism
4.
Cancer Genomics Proteomics ; 15(2): 91-114, 2018.
Article in English | MEDLINE | ID: mdl-29496689

ABSTRACT

Acquisition of resistance to topoisomerase I (TOP1)-targeting camptothecin (CPT) derivatives is a major clinical problem. Little is known about the underlying chromosomal and genomic mechanisms. We characterized the CPT-K5 cell line expressing mutant CPT-resistant TOP1 and its parental T-cell derived acute lymphoblastic leukemia CPT-sensitive RPMI-8402 cell line by karyotyping and molecular genetic methods, including subtractive oligo-based array comparative genomic hybridization (soaCGH) analysis. Karyotyping revealed that CPT-K5 cells had acquired additional structural aberrations and a reduced modal chromosomal number compared to RPMI-8402. soaCGH analysis identified vast copy number alterations and >200 unbalanced DNA breakpoints distributed unevenly across the chromosomal complement in CPT-K5. In addition, the short tandem repeat alleles were found to be highly different between CPT-K5 and its parental cell line. We identified copy number alterations affecting genes important for maintaining genome integrity and reducing CPT-induced DNA damage. We show for the first time that short tandem repeats are targets for TOP1 cleavage, that can be differentially stimulated by CPT.


Subject(s)
Camptothecin/therapeutic use , Genomics/methods , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Camptothecin/pharmacology , Cell Line , Humans , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
5.
Exp Mol Pathol ; 99(1): 56-64, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25987486

ABSTRACT

Topoisomerase I (TOP1) regulates DNA topology during replication and transcription whereas tyrosyl-DNA phosphodiesterase 1 (TDP1) is involved in the repair of several types of DNA damages, including damages from defective TOP1 catalysis. TOP1 is the target of chemotherapeutic drugs of the camptothecin family (CPT). TDP1 has in cell line based assays been shown to counteract the effect of CPT. We have quantified the enzymatic activities of TOP1 and TDP1 in paired (tumor and adjacent non-tumor) samples from non-small cell lung cancer (NSCLC) patients and show that in NSCLC TOP1 and TDP1 activities are significantly upregulated in the tumor tissue. Furthermore, we found a positive correlation between the TDP1 activity and the tumor percentage (TOP1 activity did not correlate with the tumor percentage) as well as between the activities of TOP1 and TDP1 both within the tumor and the non-tumor group. That TDP1 activity was upregulated in all tumor samples and correlated with the tumor percentage suggest that it must play a highly important function in NSCLC. This could be to protect against TOP1 mediated DNA damage as the activity of TOP1 likewise was upregulated in the majority of tumor samples and correlated positively to the TDP1 activity. Regardless, the finding that the TOP1 and TDP1 activities are upregulated and correlate positively suggests that combinatorial treatment targeting both activities could be advantageous in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/enzymology , DNA Topoisomerases, Type I/metabolism , Phosphoric Diester Hydrolases/metabolism , Biosensing Techniques , DNA Damage , DNA Replication , Humans , Nanotechnology , Sensitivity and Specificity
6.
Sensors (Basel) ; 14(1): 1195-207, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24434877

ABSTRACT

Human topoisomerase I (hTopI) is an essential cellular enzyme. The enzyme is often upregulated in cancer cells, and it is a target for chemotherapeutic drugs of the camptothecin (CPT) family. Response to CPT-based treatment is dependent on hTopI activity, and reduction in activity, and mutations in hTopI have been reported to result in CPT resistance. Therefore, hTOPI gene copy number, mRNA level, protein amount, and enzyme activity have been studied to explain differences in cellular response to CPT. We show that Rolling Circle Enhanced Enzyme Activity Detection (REEAD), allowing measurement of hTopI cleavage-religation activity at the single molecule level, may be used to detect posttranslational enzymatic differences influencing CPT response. These differences cannot be detected by analysis of hTopI gene copy number, mRNA amount, or protein amount, and only become apparent upon measuring the activity of hTopI in the presence of CPT. Furthermore, we detected differences in the activity of the repair enzyme tyrosyl-DNA phosphodiesterase 1, which is involved in repair of hTopI-induced DNA damage. Since increased TDP1 activity can reduce cellular CPT sensitivity we suggest that a combined measurement of TDP1 activity and hTopI activity in presence of CPT will be the best determinant for CPT response.


Subject(s)
DNA Topoisomerases, Type I/metabolism , Enzyme Assays/methods , Biomarkers , Blotting, Western , Caco-2 Cells , Camptothecin/pharmacology , DNA Damage/drug effects , DNA Damage/genetics , DNA Topoisomerases, Type I/genetics , Gene Dosage/genetics , HT29 Cells , Humans , Mutation , Phosphoric Diester Hydrolases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...