Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Anal Methods ; 15(19): 2343-2354, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37157832

ABSTRACT

Colorimetric sensing technology for the detection of explosives, drugs, and their precursor chemicals is an important and effective approach. In this work, we use various machine learning models to detect these substances from colorimetric sensing experiments conducted in controlled environments. The detection experiments based on the response of a colorimetric chip containing 26 chemo-responsive dyes indicate that homemade explosives (HMEs) such as hexamethylene triperoxide diamine (HMTD), triacetone triperoxide (TATP), and methyl ethyl ketone peroxide (MEKP) used in improvised explosives devices are detected with true positive rate (TPR) of 70-75%, 73-90% and 60-82% respectively. Time series classifiers such as Convolutional Neural Networks (CNN) are explored, and the results indicate that improvements can be achieved with the use of kinetics of the chemical responses. The use of CNNs is limited, however, to scenarios where a large number of measurements, typically in the range of a few hundred, of each analyte are available. Feature selection of important dyes using the Group Lasso (GPLASSO) algorithm indicated that certain dyes are more important in discrimination of an analyte from ambient air. This information could be used for optimizing the colorimetric sensor and extend the detection to more analytes.

2.
Opt Lett ; 44(22): 5505-5508, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31730094

ABSTRACT

Improved long-wavelength transmission and supercontinuum (SC) generation is demonstrated by antireflective (AR) nanoimprinting and tapering of chalcogenide photonic crystal fibers (PCFs). Using a SC source input spanning from 1 to 4.2 µm, the total transmission of a 15 µm core diameter PCF was improved from ∼53% to ∼74% by nanoimprinting of AR structures on both input and output facets of the fiber. Through a combined effect of reduced reflection and redshifting of the spectrum to 5 µm, the relative transmission of light >3.5 µm in the same fiber was increased by 60.2%. Further extension of the spectrum to 8 µm was achieved using tapered fibers. The spectral broadening dynamics and output power were investigated using different taper parameters and pulse repetition rates.

3.
Opt Lett ; 44(17): 4383-4386, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31465408

ABSTRACT

We report on the progress towards developing a new method for fabricating more efficient, broadband antireflective (AR) moth-eye structures in As2Se3 via a direct nanoimprinting technique. Thermal reflow is used during mold fabrication to reshape a conventional deep-ultraviolet lithography in order to promote a pattern transfer of "secant ogive"-like moth-eye structures. Once replicated, structures modified by reflow displayed greater AR efficiency compared to structures replicated by a conventional mold, achieving the highest spectrum-averaged transmittance improvement of 12.36% from 3.3 to 12 µm.

4.
Environ Sci Pollut Res Int ; 26(28): 29460-29472, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31401800

ABSTRACT

The stability of gold nanoparticles (AuNPs) stabilized electrostatically with citrate or (electro)sterically by commercially available amphiphilic block copolymers (PVP-VA or PVA-COOH) was studied under various physicochemical conditions. Subsequently, the mobility of the AuNPs in porous media (sand) was investigated in column studies under environmental relevant physicochemical conditions. Electrostatically stabilized AuNPs were unstable under most physicochemical conditions due to the compression of the electrical double layer. Consequently, aggregation and deposition rapidly immobilized the AuNPs. Sterically stabilized AuNPs showed significantly less sensitivity towards changes in the physicochemical conditions with high stability, high mobility with negligible retardation, and particle deposition rate coefficients ranging an order of magnitude (1.5 × 10-3 to 1.5 × 10-2 min-1) depending on the type and amount of stabilizer, and thereby the surface coverage and attachment affinity. The transport of sterically stabilized AuNPs is facilitated by reversible deposition in shallow energy minima with continuous reentrainment and blocking of available attachment sites by deposited AuNPs. The stability and mobility of NPs in the environment will thereby be highly dependent on the specific stabilizing agent and variations in the coverage on the NP. Under the given experimental conditions, transport distances of the most mobile AuNPs of up to 20 m is expected. Due to their size-specific plasmonic properties, the easily detectable AuNPs are proposed as potential model or tracer particles for studying transport of various stabilized NPs under environmental conditions.


Subject(s)
Citrates/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Silicon Dioxide/chemistry , Porosity , Static Electricity
5.
J Hazard Mater ; 332: 140-148, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28285107

ABSTRACT

Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions-copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water.

6.
Beilstein J Nanotechnol ; 6: 1661-5, 2015.
Article in English | MEDLINE | ID: mdl-26425416

ABSTRACT

Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications. However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into photoresist materials. As a solution to this problem, an easy new method of fabricating silver nanocomposites by an in situ reduction of precursors within the epoxy-based photoresist SU-8 has been developed. AgNO3 dissolved in acetonitrile and mixed with the epoxy-based photoresist SU-8 forms silver nanoparticles primarily during the pre- and post-exposure soft bake steps at 95 °C. A further high-temperature treatment at 300 °C resulted in the formation of densely homogeneously distributed silver nanoparticles in the photoresist matrix. No particle growth or agglomeration of nanoparticles is observed at this point. The reported new in situ silver nanocomposite materials can be spin coated as homogeneous thin films and structured by using UV lithography. A resolution of 5 µm is achieved in the lithographic process. The UV exposure time is found to be independent of the nanoparticle concentration. The fabricated silver nanocomposites exhibit high plasmonic responses suitable for the development of new optoelectronic and optical sensing devices.

7.
Lab Chip ; 11(14): 2411-6, 2011 Jul 21.
Article in English | MEDLINE | ID: mdl-21623438

ABSTRACT

Sensors are crucial in many daily operations including security, environmental control, human diagnostics and patient monitoring. Screening and online monitoring require reliable and high-throughput sensing. We report on the demonstration of a high-throughput label-free sensor platform utilizing cantilever based sensors. These sensors have often been acclaimed to facilitate highly parallelized operation. Unfortunately, so far no concept has been presented which offers large datasets as well as easy liquid sample handling. We use optics and mechanics from a DVD player to handle liquid samples and to read-out cantilever deflection and resonant frequency. Also, surface roughness is measured. When combined with cantilever deflection the roughness is discovered to hold valuable additional information on specific and unspecific binding events. In a few minutes, 30 liquid samples can be analyzed in parallel, each by 24 cantilever-based sensors. The approach was used to detect the binding of streptavidin and antibodies.


Subject(s)
Biosensing Techniques/methods , Antibodies/immunology , Benzamides/chemistry , Benzamides/immunology , Biosensing Techniques/instrumentation , Biotin/chemistry , High-Throughput Screening Assays/methods , Ovalbumin/chemistry , Ovalbumin/immunology , Protein Binding , Streptavidin/chemistry
8.
J Biomed Mater Res A ; 96(2): 372-83, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21171157

ABSTRACT

Standard cell culture plastic was surface modified by passive adsorption or covalent attachment of interleukin (IL)-4 and investigated for its ability to induce differentiation of human monocytes into mature dendritic cells, a process dose-dependently regulated by IL-4. Covalent attachment of IL-4 proceeded via anthraquinone photochemistry to introduce amine functionalities at the surface followed by coupling of IL-4 through a bifunctional amine-reactive linker. X-ray photoelectron spectroscopy showed that undesirable multilayer formation of the photoactive compound could be avoided by reaction in water instead of phosphate-buffered saline. Passively adsorbed IL-4 was observed to induce differentiation to dendritic cells, but analysis of cell culture supernatants revealed that leakage of IL-4 into solution could account for the differentiation observed. Covalent attachment resulted in bound IL-4 at similar concentrations to the passive adsorption process, as measured by enzyme-linked immunosorbent assays, and the bound IL-4 did not leak into solution to any measurable extent during cell culture. However, covalently bound IL-4 was incapable of inducing monocyte differentiation. This may be caused by IL-4 denaturation or improper epitope presentation induced by the immobilization process, or by biological irresponsiveness of monocytes to IL-4 in immobilized formats.


Subject(s)
Cell Culture Techniques/methods , Cell Differentiation/drug effects , Immobilized Proteins/pharmacology , Interleukin-4/pharmacology , Monocytes/cytology , Monocytes/drug effects , Plastics/pharmacology , Adsorption/drug effects , Anthraquinones/chemistry , Anthraquinones/pharmacology , Dendritic Cells/cytology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Down-Regulation/drug effects , Enzyme-Linked Immunosorbent Assay , Humans , Monocytes/metabolism , Solutions , Surface Properties/drug effects , Triazines/chemistry , Triazines/pharmacology , Up-Regulation/drug effects
9.
ACS Nano ; 3(7): 1947-51, 2009 Jul 28.
Article in English | MEDLINE | ID: mdl-19572620

ABSTRACT

Magnetic nanoparticles (MNP) can be used as contrast-enhancing agents to visualize tumors by magnetic resonance imaging (MRI). Here we describe an easy synthesis method of magnetic nanoparticles coated with polyethylene glycol (PEG) and demonstrate size-dependent accumulation in murine tumors following intravenous injection. Biocompatible iron oxide MNPs coated with PEG were prepared by replacing oleic acid with a biocompatible and commercially available silane-PEG to provide an easy and effective method for chemical coating. The colloidal stable PEGylated MNPs were magnetically separated into two distinct size subpopulations of 20 and 40 nm mean diameters with increased phagocytic uptake observed for the 40 nm size range in vitro. MRI detection revealed greater iron accumulation in murine tumors for 40 nm nanoparticles after intravenous injection. The enhanced MRI contrast of the larger MNPs in the tumor may be a combined result of the size-dependent extravasation and capture by macrophages in the tumor, providing important considerations for improved bioimaging approaches.

10.
Lab Chip ; 4(1): 28-37, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15007437

ABSTRACT

A disposable single use polymer microfluidics chip has been developed and manufactured by micro injection molding. The chip has the same outer dimensions as a standard microscope slide (25 x 76 x 1.1 mm) and is designed to be compatible with existing microscope slide handling equipment like microarray scanners. The chip contains an inlet, a 10 microL hybridization chamber capable of holding a 1000 spot array, a waste chamber and a vent to allow air to escape when sample is injected. The hybridization chamber ensures highly homogeneous hybridization conditions across the microarray. We describe the use of this chip in a flexible setup with fluorescence based detection, temperature control and liquid handling by computer controlled syringe pumps. The chip and the setup presented in this article provide a powerful tool for highly parallel studies of kinetics and thermodynamics of duplex formation in DNA microarrays. The experimental setup presented in this article enables the on-chip microarray to be hybridized and monitored at several different stringency conditions during a single assay. The performance of the chip and the setup is demonstrated by on-line measurements of a hybridization of a DNA target solution to a microarray. A presented numerical model indicates that the hybridization process in microfluidic hybridization assays is diffusion limited, due to the low values of the diffusion coefficients D of the DNA and RNA molecules involved.


Subject(s)
Microfluidics/methods , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis/methods , Polymers/chemistry , Automation , Diffusion , Equipment Design , Fluorescence , Rheology , Temperature
11.
Nucleic Acids Res ; 31(6): e25, 2003 Mar 15.
Article in English | MEDLINE | ID: mdl-12626724

ABSTRACT

Technologies allowing direct detection of specific RNA/DNA sequences occasionally serve as an alternative to amplification methods for gene expression studies. In these direct methods the hybridization of probes takes place in complex mixtures, thus specificity and sensitivity still limit the use of current technologies. To address these challenges, we developed a new technique called the nucleic acid capture assay, involving a direct multi-capture system. This approach combines a 3'-ethylene glycol scaffolding with the incorporation of 2'-methoxy deoxyribonucleotides in the capture sequences. In our design, all nucleotides other than those complementary to the target mRNA have been replaced by an inert linker, resulting in significant reductions in non-specific binding. We also provide a versatile method to detect the presence of captured targets by using specific labeled probes with alkaline phosphatase-conjugated anti-label antibodies. This direct, flexible and reliable technique for gene expression analysis is well suited for high-throughput screening and has potential for DNA microarray applications.


Subject(s)
Chemistry Techniques, Analytical/methods , Nucleic Acids/analysis , Fetal Hemoglobin/genetics , Gene Expression , Humans , K562 Cells , Nucleic Acids/genetics , RNA/genetics , RNA/metabolism , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...