Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 465: 93-105, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26669495

ABSTRACT

Fusing multiwall carbon nanotubes (MWCNTs) with TiO2 at the nano-scale level promotes the separation of those electron-hole charges generated upon UV and daylight irradiation. In this study, we investigated facile sonochemical synthesis, combined with the calcination process for the preparations of TiO2-MWCNT composites with different mole ratios of titanium and carbon. In order to produce stable nano dispersions we exploited an innovative biotechnology-based approach for the covalent functionalizations of TiO2-MWCNTs with in-situ synthesized soluble phenoxazine dye molecules. The none and functionalized TiO2-MWCNTs composites were analyzed by a range of analytical techniques including XRD, Raman, XPS, SEM and UV-vis diffuse reflectance spectroscopy (DRS), and dynamic light scattering (DLS). The photocatalytic activity was evaluated toward the liquid-phase degradation of MB in aqueous solution under both UV and visible light irradiation. TiO2-MWCNTs with optimized mole ratio exhibit much higher photocatalytic activity and stability than bare TiO2. The as-prepared TiO2-MWCNTs photocatalyst possessed good adsorptivity of dyes, extended light absorption range and efficient charge separation properties simultaneously. The results indicated that the soluble phenoxazine dyes and amino-benzenesulfonic acid monomers were covalently grafted on to the surfaces of TiO2-MCNTs, which promoted good aquatic dispersibility and extended light absorption, resulting in increased photocatalytic efficiency.

2.
Sensors (Basel) ; 14(7): 11467-91, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24977388

ABSTRACT

The article offers a comparison of the sensitivities for vapour trace detection of Trinitrotoluene (TNT) explosives of two different sensor systems: a chemo-mechanical sensor based on chemically modified Atomic Force Microscope (AFM) cantilevers based on Micro Electro Mechanical System (MEMS) technology with optical detection (CMO), and a miniature system based on capacitive detection of chemically functionalized planar capacitors with interdigitated electrodes with a comb-like structure with electronic detection (CE). In both cases (either CMO or CE), the sensor surfaces are chemically functionalized with a layer of APhS (trimethoxyphenylsilane) molecules, which give the strongest sensor response for TNT. The construction and calibration of a vapour generator is also presented. The measurements of the sensor response to TNT are performed under equal conditions for both systems, and the results show that CE system with ultrasensitive electronics is far superior to optical detection using MEMS. Using CMO system, we can detect 300 molecules of TNT in 10(+12) molecules of N2 carrier gas, whereas the CE system can detect three molecules of TNT in 10(+12) molecules of carrier N2.


Subject(s)
Atmosphere/chemistry , Conductometry/instrumentation , Explosive Agents/analysis , Gases/analysis , Micro-Electrical-Mechanical Systems/instrumentation , Microscopy, Atomic Force/instrumentation , Trinitrotoluene/analysis , Atmosphere/analysis , Electric Capacitance , Electrodes , Equipment Design , Equipment Failure Analysis , Microchemistry/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...