Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol ; 25(1): 141, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38807159

ABSTRACT

BACKGROUND: Reproductive isolation can result from adaptive processes (e.g., ecological speciation and mutation-order speciation) or stochastic processes such as "system drift" model. Ecological speciation predicts barriers to gene flow between populations from different environments, but not among replicate populations from the same environment. In contrast, reproductive isolation among populations independently adapted to the same/similar environment can arise from both mutation-order speciation or system drift. RESULTS: In experimentally evolved populations adapting to a hot environment for over 100 generations, we find evidence for pre- and postmating reproductive isolation. On one hand, an altered lipid metabolism and cuticular hydrocarbon composition pointed to possible premating barriers between the ancestral and replicate evolved populations. On the other hand, the pronounced gene expression differences in male reproductive genes may underlie the postmating isolation among replicate evolved populations adapting to the same environment with the same standing genetic variation. CONCLUSION: Our study confirms that replicated evolution experiments provide valuable insights into the mechanisms of speciation. The rapid emergence of the premating reproductive isolation during temperature adaptation showcases incipient ecological speciation. The potential evidence of postmating reproductive isolation among replicates gave rise to two hypotheses: (1) mutation-order speciation through a common selection on early fecundity leading to an inherent inter-locus sexual conflict; (2) system drift with genetic drift along the neutral ridges.


Subject(s)
Hot Temperature , Reproductive Isolation , Male , Adaptation, Physiological/genetics , Animals , Female , Genetic Speciation , Lipid Metabolism
2.
Genome Biol Evol ; 16(4)2024 04 02.
Article in English | MEDLINE | ID: mdl-38620076

ABSTRACT

Most traits are polygenic, and the contributing loci can be identified by genome-wide association studies. The genetic basis of adaptation (adaptive architecture) is, however, difficult to characterize. Here, we propose to study the adaptive architecture of traits by monitoring the evolution of their phenotypic variance during adaptation to a new environment in well-defined laboratory conditions. Extensive computer simulations show that the evolution of phenotypic variance in a replicated experimental evolution setting can distinguish between oligogenic and polygenic adaptive architectures. We compared gene expression variance in male Drosophila simulans before and after 100 generations of adaptation to a novel hot environment. The variance change in gene expression was indistinguishable for genes with and without a significant change in mean expression after 100 generations of evolution. We suggest that the majority of adaptive gene expression evolution can be explained by a polygenic architecture. We propose that tracking the evolution of phenotypic variance across generations can provide an approach to characterize the adaptive architecture.


Subject(s)
Multifactorial Inheritance , Phenotype , Animals , Male , Adaptation, Physiological/genetics , Evolution, Molecular , Drosophila simulans/genetics , Drosophila/genetics , Biological Evolution , Computer Simulation
3.
Mol Biol Evol ; 37(9): 2630-2640, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32402077

ABSTRACT

Neuronal activity is temperature sensitive and affects behavioral traits important for individual fitness, such as locomotion and courtship. Yet, we do not know enough about the evolutionary response of neuronal phenotypes in new temperature environments. Here, we use long-term experimental evolution of Drosophila simulans populations exposed to novel temperature regimes. Here, we demonstrate a direct relationship between thermal selective pressure and the evolution of neuronally expressed molecular and behavioral phenotypes. Several essential neuronal genes evolve lower expression at high temperatures and higher expression at low temperatures, with dopaminergic neurons standing out by displaying the most consistent expression change across independent replicates. We functionally validate the link between evolved gene expression and behavioral changes by pharmacological intervention in the experimentally evolved D. simulans populations as well as by genetically triggered expression changes of key genes in D. melanogaster. As natural temperature clines confirm our results for Drosophila and Anopheles populations, we conclude that neuronal dopamine evolution is a key factor for temperature adaptation.


Subject(s)
Acclimatization/genetics , Biological Evolution , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Drosophila/metabolism , Animals , Dopamine/genetics , Drosophila/genetics , Locomotion/genetics , Male , Phenotype
4.
Elife ; 92020 02 21.
Article in English | MEDLINE | ID: mdl-32083552

ABSTRACT

The pervasive occurrence of sexual dimorphism demonstrates different adaptive strategies of males and females. While different reproductive strategies of the two sexes are well-characterized, very little is known about differential functional requirements of males and females in their natural habitats. Here, we study the impact environmental change on the selection response in both sexes. Exposing replicated Drosophila populations to a novel temperature regime, we demonstrate sex-specific changes in gene expression, metabolic and behavioral phenotypes in less than 100 generations. This indicates not only different functional requirements of both sexes in the new environment but also rapid sex-specific adaptation. Supported by computer simulations we propose that altered sex-biased gene regulation from standing genetic variation, rather than new mutations, is the driver of rapid sex-specific adaptation. Our discovery of environmentally driven divergent functional requirements of males and females has important implications-possibly even for gender aware medical treatments.


Male and female animals of the same species sometimes differ in appearance and sexual behavior, a phenomenon known as sexual dimorphism. Both sexes share most of the same genes, but differences can emerge because of the way these are read by cells to create proteins ­ a process called gene expression. For instance, certain genes can be more expressed in males than in females, and vice-versa. Most studies into the emergence of sexual dimorphism have taken place in stable environments with few changes in climate or other factors. Therefore, the potential impact of environmental changes on sexual dimorphism has been largely overlooked. Here, Hsu et al. used genetic and computational approaches to investigate whether male and female fruit flies adapt differently to a new, hotter environment over several generations. The experiment showed that, after only 100 generations, the way that 60% of all genes were expressed evolved in a different direction in the two sexes. This led to differences in how the males and females made and broke down fat molecules, and in how their neurons operated. These expression changes also translated in differences for high-level biological processes. For instance, animals in the new settings ended up behaving differently, with the males at the end of the experiment spending more time chasing females than the ancestral flies. These findings demonstrate that male and female fruit flies adapt many biological processes (including metabolism and behaviors) differently to cope with changes in their environment, and that many different genes support these sex-specific adaptations. Ultimately, the work by Hsu et al. may inform medical strategies that take into account interactions between the patient's sex and their environment.


Subject(s)
Adaptation, Physiological/physiology , Drosophila melanogaster/physiology , Adaptation, Physiological/genetics , Animals , Female , Gene Expression Regulation/physiology , Genes/physiology , Hot Temperature , Male , Sex Factors
5.
PLoS Biol ; 17(2): e3000128, 2019 02.
Article in English | MEDLINE | ID: mdl-30716062

ABSTRACT

The genetic architecture of adaptive traits is of key importance to predict evolutionary responses. Most adaptive traits are polygenic-i.e., result from selection on a large number of genetic loci-but most molecularly characterized traits have a simple genetic basis. This discrepancy is best explained by the difficulty in detecting small allele frequency changes (AFCs) across many contributing loci. To resolve this, we use laboratory natural selection to detect signatures for selective sweeps and polygenic adaptation. We exposed 10 replicates of a Drosophila simulans population to a new temperature regime and uncovered a polygenic architecture of an adaptive trait with high genetic redundancy among beneficial alleles. We observed convergent responses for several phenotypes-e.g., fitness, metabolic rate, and fat content-and a strong polygenic response (99 selected alleles; mean s = 0.059). However, each of these selected alleles increased in frequency only in a subset of the evolving replicates. We discerned different evolutionary paradigms based on the heterogeneous genomic patterns among replicates. Redundancy and quantitative trait (QT) paradigms fitted the experimental data better than simulations assuming independent selective sweeps. Our results show that natural D. simulans populations harbor a vast reservoir of adaptive variation facilitating rapid evolutionary responses using multiple alternative genetic pathways converging at a new phenotypic optimum. This key property of beneficial alleles requires the modification of testing strategies in natural populations beyond the search for convergence on the molecular level.


Subject(s)
Adaptation, Physiological/genetics , Drosophila simulans/genetics , Drosophila simulans/physiology , Multifactorial Inheritance/genetics , Alleles , Animals , Biological Evolution , Genetic Fitness , Genetic Heterogeneity , Genome, Insect , Haplotypes/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
6.
Genes (Basel) ; 10(2)2019 01 28.
Article in English | MEDLINE | ID: mdl-30696109

ABSTRACT

Gene expression profiling is one of the most reliable high-throughput phenotyping methods, allowing researchers to quantify the transcript abundance of expressed genes. Because many biotic and abiotic factors influence gene expression, it is recommended to control them as tightly as possible. Here, we show that a 24 h age difference of Drosophilasimulans females that were subjected to RNA sequencing (RNA-Seq) five and six days after eclosure resulted in more than 2000 differentially expressed genes. This is twice the number of genes that changed expression during 100 generations of evolution in a novel hot laboratory environment. Importantly, most of the genes differing in expression due to age introduce false positives or negatives if an adaptive gene expression analysis is not controlled for age. Our results indicate that tightly controlled experimental conditions, including precise developmental staging, are needed for reliable gene expression analyses, in particular in an evolutionary framework.


Subject(s)
Aging/genetics , Evolution, Molecular , Thermotolerance/genetics , Transcriptome , Animals , Drosophila , Female , Male
7.
Nature ; 555(7698): E21-E22, 2018 03 28.
Article in English | MEDLINE | ID: mdl-29595765
8.
Mol Ecol ; 26(19): 5149-5159, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28742942

ABSTRACT

Transposable elements (TEs) are mobile genetic elements that can move around the genome, and their expression is one precondition for this mobility. Because the insertion of TEs in new genomic positions is largely deleterious, the molecular mechanisms for transcriptional suppression have been extensively studied. In contrast, very little is known about their primary transcriptional regulation. Here, we characterize the expression dynamics of TE families in Drosophila melanogaster across a broad temperature range (13-29°C). In 71% of the expressed TE families, the expression is modulated by temperature. We show that this temperature-dependent regulation is specific for TE families and strongly affected by the genetic background. We deduce that TEs carry family-specific regulatory sequences, which are targeted by host-specific trans-acting factors, such as transcription factors. Consistent with the widespread dominant inheritance of gene expression, we also find the prevailing dominance of TE family expression. We conclude that TE family expression across a range of temperatures is regulated by an interaction between TE family-specific regulatory elements and trans-acting factors of the host.


Subject(s)
DNA Transposable Elements , Drosophila melanogaster/genetics , Temperature , Trans-Activators/genetics , Animals , Female , Gene Expression Regulation , Genome, Insect , Genotype , Sequence Analysis, RNA
9.
Genetics ; 204(1): 315-25, 2016 09.
Article in English | MEDLINE | ID: mdl-27440867

ABSTRACT

Alternative splicing is the highly regulated process of variation in the removal of introns from premessenger-RNA transcripts. The consequences of alternative splicing on the phenotype are well documented, but the impact of the environment on alternative splicing is not yet clear. We studied variation in alternative splicing among four different temperatures, 13, 18, 23, and 29°, in two Drosophila melanogaster genotypes. We show plasticity of alternative splicing with up to 10% of the expressed genes being differentially spliced between the most extreme temperatures for a given genotype. Comparing the two genotypes at different temperatures, we found <1% of the genes being differentially spliced at 18°. At extreme temperatures, however, we detected substantial differences in alternative splicing-with almost 10% of the genes having differential splicing between the genotypes: a magnitude similar to between species differences. Genes with differential alternative splicing between genotypes frequently exhibit dominant inheritance. Remarkably, the pattern of surplus of differences in alternative splicing at extreme temperatures resembled the pattern seen for gene expression intensity. Since different sets of genes were involved for the two phenotypes, we propose that purifying selection results in the reduction of differences at benign temperatures. Relaxed purifying selection at temperature extremes, on the other hand, may cause the divergence in gene expression and alternative splicing between the two strains in rarely encountered environments.


Subject(s)
Drosophila melanogaster/genetics , RNA Splicing/genetics , Alternative Splicing , Animals , Cell Plasticity/genetics , Exons , Female , Gene Expression , Genotype , Introns , Male , Phenotype , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...