Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38138833

ABSTRACT

In recent times, ion implantation has received increasing interest for novel applications related to deterministic material doping on the nanoscale, primarily for the fabrication of solid-state quantum devices. For such applications, precise information concerning the number of implanted ions and their final position within the implanted sample is crucial. In this work, we present an innovative method for the detection of single ions of MeV energy by using a sub-micrometer ultra-thin silicon carbide sensor operated as an in-beam counter of transmitted ions. The SiC sensor signals, when compared to a Passivated Implanted Planar Silicon detector signal, exhibited a 96.5% ion-detection confidence, demonstrating that the membrane sensors can be utilized for high-fidelity ion counting. Furthermore, we assessed the angular straggling of transmitted ions due to the interaction with the SiC sensor, employing the scanning knife-edge method of a focused ion microbeam. The lateral dimension of the ion beam with and without the membrane sensor was compared to the SRIM calculations. The results were used to discuss the potential of such experimental geometry in deterministic ion-implantation schemes as well as other applications.

2.
Sci Rep ; 13(1): 13483, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596364

ABSTRACT

With the number of qubits increasing with each new quantum processor design, it is to be expected that the area of the future quantum devices will become larger. As diamond is one of the promising materials for solid state quantum devices fabricated by ion implantation, we developed a single board diamond detector/preamplifier implantation system to serve as a testbed for implantation sites of different areas and geometry. We determined that for simple circular openings in a detector electrode, the uniformity of detection of the impinging ions increases as the area of the sites decreases. By altering the implantation site design and introducing lateral electric field, we were able to increase the area of the implantation site by an order of magnitude, without decreasing the detection uniformity. Successful detection of 140 keV copper ions that penetrate on average under 100 nm was demonstrated, over the 800 µm2 area implantation site (large enough to accommodate over 2 × 105 possible qubits), with 100% detection efficiency. The readout electronics of the implantation system were calibrated by a referent 241Am gamma source, achieving an equivalent noise charge value of 48 electrons, at room temperature, less than 1% of the energy of impinging ions.

3.
Materials (Basel) ; 16(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36770150

ABSTRACT

The Dual-beam ion irradiation facility for Fusion materials (DiFU) has been developed and installed at the Ruder Boskovic Institute with the purpose to perform irradiation of samples of fusion materials by one or two ion beams. Ion beams are delivered to the DiFU chamber by a 6 MV EN Tandem Van de Graaff and a 1 MV HVE Tandetron accelerator, enabling irradiation of areas up to 30 × 30 mm2. The sample holder enables the three-dimensional positioning of samples that can be irradiated while being heated, cooled, or kept at room temperature. Ion fluxes are measured indirectly by the insertion of two large Faraday cups. Besides, the ion flux is monitored continuously by two sets of horizontal and vertical slits, which, in turn, define the limits of the irradiation area on the sample. Sample temperature and conditions during irradiation are additionally monitored by a set of thermocouples, an IR camera, and a video camera. Particular care is dedicated to the mitigation of carbon contamination during ion irradiation.

4.
Micromachines (Basel) ; 14(1)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36677227

ABSTRACT

Silicon carbide (SiC), thanks to its material properties similar to diamond and its industrial maturity close to silicon, represents an ideal candidate for several harsh-environment sensing applications, where sensors must withstand high particle irradiation and/or high operational temperatures. In this study, to explore the radiation tolerance of SiC sensors to multiple damaging processes, both at room and high temperature, we used the Ion Microprobe Chamber installed at the Ruder Boskovic Institute (Zagreb, Croatia), which made it possible to expose small areas within the same device to different ion beams, thus evaluating and comparing effects within a single device. The sensors tested, developed jointly by STLab and SenSiC, are PIN diodes with ultrathin free-standing membranes, realized by means of a recently developed doping-selective electrochemical etching. In this work, we report on the changes of the charge transport properties, specifically in terms of the charge collection efficiency (CCE), with respect to multiple localized proton irradiations, performed at both room temperature (RT) and 500 °C.

5.
Materials (Basel) ; 15(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35009531

ABSTRACT

Synthetic single crystal diamond grown using the chemical vapor deposition technique constitutes an extraordinary candidate material for monitoring radiation in extreme environments. However, under certain conditions, a progressive creation of space charge regions within the crystal can lead to the deterioration of charge collection efficiency. This phenomenon is called polarization and represents one of the major drawbacks associated with using this type of device. In this study, we explore different techniques to mitigate the degradation of signal due to polarization. For this purpose, two different diamond detectors are characterized by the ion beam-induced charge technique using a nuclear microprobe, which utilizes MeV energy ions of different penetration depths to probe charge transport in the detectors. The effect of polarization is analyzed by turning off the bias applied to the detector during continuous or discontinuous irradiation, and also by alternating bias polarity. In addition, the beneficial influence of temperature for reducing the effect of polarization is also observed. Finally, the effect of illuminating the detector with light is also measured. Our experimental results indicate that heating a detector or turning off the bias, and then applying it during continuous irradiation can be used as satisfactory methods for recovering the CCE value close to that of a prepolarized state. In damaged regions, illumination with white light can be used as a standard method to suppress the strength of polarization induced by holes.

6.
Materials (Basel) ; 13(11)2020 May 29.
Article in English | MEDLINE | ID: mdl-32485829

ABSTRACT

Diamond, as a wide band-gap semiconductor material, has the potential to be exploited under a wide range of extreme operating conditions, including those used for radiation detectors. The radiation tolerance of a single-crystal chemical vapor deposition (scCVD) diamond detector was therefore investigated while heating the device to elevated temperatures. In this way, operation under both high-temperature and high-radiation conditions could be tested simultaneously. To selectively introduce damage in small areas of the detector material, a 5 MeV scanning proton microbeam was used as damaging radiation. The charge collection efficiency (CCE) in the damaged areas was monitored using 2 MeV protons and the ion beam induced charge (IBIC) technique, indicating that the CCE decreases with increasing temperature. This decreasing trend saturates in the temperature range of approximately 660 K, after which CCE recovery is observed. These results suggest that the radiation hardness of diamond detectors deteriorates at elevated temperatures, despite the annealing effects that are also observed. It should be noted that the diamond detector investigated herein retained its very good spectroscopic properties even at an operation temperature of 725 K (≈2% for 2 MeV protons).

7.
Nanomaterials (Basel) ; 10(3)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138349

ABSTRACT

Self-assembly of colloidal monolayers represents a prominent approach to the fabrication of nanostructures. The modification of the shape of colloidal particles is essential in order to enrich the variety of attainable patterns which would be limited by the typical assembly of spherical particles in a hexagonal arrangement. Polymer particles are particularly promising in this sense. In this article, we investigate the deformation of closely-packed polystyrene particles under MeV oxygen ion irradiation at normal incidence using atomic force microscopy (AFM). By developing a procedure based on the fitting of particle topography with quadrics, we reveal a scenario of deformation more complex than the one observed in previous studies for silica particles, where several phenomena, including ion hammering, sputtering, chemical modifications, can intervene in determining the final shape due to the specific irradiation conditions. In particular, deformation into an ellipsoidal shape is accompanied by shrinkage and polymer redistribution with the presence of necks between particles for increasing ion fluence. In addition to casting light on particle irradiation in a regime not yet explored, we present an effective method for the characterization of the colloidal particle morphology which can be applied to describe and understand particle deformation in other regimes of irradiation or with different techniques.

8.
Sci Rep ; 8(1): 10392, 2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29991819

ABSTRACT

The recent development of new advanced materials demands extensive effort in developing new analytical techniques that can provide insight into material composition at the nanoscale, particularly at surfaces and interfaces, which is important for both fabrication and material performance. Here, we present a proof of principle for a new setup used for thin-film characterisation and depth profiling based on a combination of time-of-flight elastic recoil detection analysis (TOF-ERDA) and Ar sputtering. A quantitative depth profiling with a best achievable surface depth resolution of ~2 nm can be realised for the entire layer, which is important for the precise determination of thickness and composition of samples that are several tenths of a nanometre thick. The performance of TOF-ERDA with Ar sputtering was demonstrated using 15 nm Cu evaporated onto a Si substrate. The advantages and limits of the method are discussed in detail.

9.
Materials (Basel) ; 10(9)2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28878186

ABSTRACT

The aim of this work is to investigate the feasibility of ion beam analysis techniques for monitoring swift heavy ion track formation. First, the use of the in situ Rutherford backscattering spectrometry in channeling mode to observe damage build-up in quartz SiO₂ after MeV heavy ion irradiation is demonstrated. Second, new results of the in situ grazing incidence time-of-flight elastic recoil detection analysis used for monitoring the surface elemental composition during ion tracks formation in various materials are presented. Ion tracks were found on SrTiO₃, quartz SiO₂, a-SiO₂, and muscovite mica surfaces by atomic force microscopy, but in contrast to our previous studies on GaN and TiO₂, surface stoichiometry remained unchanged. Third, the usability of high resolution particle induced X-ray spectroscopy for observation of electronic dynamics during early stages of ion track formation is shown.

10.
J Appl Crystallogr ; 49(Pt 5): 1704-1712, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27738417

ABSTRACT

Nanostructuring of surfaces and two-dimensional materials using swift heavy ions offers some unique possibilities owing to the deposition of a large amount of energy localized within a nanoscale volume surrounding the ion trajectory. To fully exploit this feature, the morphology of nanostructures formed after ion impact has to be known in detail. In the present work the response of a rutile TiO2 (001) surface to grazing-incidence swift heavy ion irradiation is investigated. Surface ion tracks with the well known intermittent inner structure were successfully produced using 23 MeV I ions. Samples irradiated with different ion fluences were investigated using atomic force microscopy and grazing-incidence small-angle X-ray scattering. With these two complementary approaches, a detailed description of the swift heavy ion impact sites, i.e. the ion tracks on the surface, can be obtained even for the case of multiple ion track overlap. In addition to the structural investigation of surface ion tracks, the change in stoichiometry of the rutile TiO2 (001) surface during swift heavy ion irradiation was monitored using in situ time-of-flight elastic recoil detection analysis, and a preferential loss of oxygen was found.

11.
Sci Rep ; 5: 15901, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26510889

ABSTRACT

Focused MeV ion beams with micrometric resolution are suitable tools for the direct writing of conductive graphitic channels buried in an insulating diamond bulk, as already demonstrated for different device applications. In this work we apply this fabrication method to the electrical excitation of color centers in diamond, demonstrating the potential of electrical stimulation in diamond-based single-photon sources. Differently from optically-stimulated light emission from color centers in diamond, electroluminescence (EL) requires a high current flowing in the diamond subgap states between the electrodes. With this purpose, buried graphitic electrode pairs, 10 µm spaced, were fabricated in the bulk of a single-crystal diamond sample using a 6 MeV C microbeam. The electrical characterization of the structure showed a significant current injection above an effective voltage threshold of 150 V, which enabled the stimulation of a stable EL emission. The EL imaging allowed to identify the electroluminescent regions and the residual vacancy distribution associated with the fabrication technique. Measurements evidenced isolated electroluminescent spots where non-classical light emission in the 560-700 nm spectral range was observed. The spectral and auto-correlation features of the EL emission were investigated to qualify the non-classical properties of the color centers.

12.
Rev Sci Instrum ; 81(3): 033305, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20370168

ABSTRACT

A position sensitive detection system based on the microchannel plate detector has been constructed and installed at the existing time of flight (TOF) spectrometer in order to perform a kinematic correction and improve the surface time/depth resolution of elastic recoil detection analysis (ERDA) system. The position resolution of the detector has been tested for different types of ions and anode voltages. TOF spectra of recoiled O ions from SiO(2) and F from CaF(2) were collected in coincidence with position sensitive detector signal. Kinematic correction of TOF spectra improved surface time/depth resolution by approximately 20% for our system; however even higher improvements could be obtained in larger solid angle TOF-ERDA systems.

13.
Nanotechnology ; 19(45): 455701, 2008 Nov 12.
Article in English | MEDLINE | ID: mdl-21832790

ABSTRACT

Pure poly(dimethylsiloxane) (PDMS) films, PDMS-nanodiamond (ND) and pure nanodiamond powder were irradiated with 2 MeV protons under a variety of fluence and current conditions. Upon proton irradiation, these samples acquire a fluence-dependent photoluminescence (PL). The emission and excitation spectra, photostability and emission lifetime of the induced photoluminescence of PDMS and PDMS-ND samples are reported. Pure PDMS exhibits a noticeable stable blue PL, while the PDMS-ND composites exhibit a pronounced stable green PL under 425 nm excitation. The PL of PDMS-ND composites is much more prominent than that of pure PDMS or pure ND powder even when irradiated at higher doses. The origin of the significantly enhanced PL intensity for the proton-irradiated PDMS-ND composite is explained by the combination of enhanced intrinsic PL within ND particles due to ion-implantation-generated defects and by PL originating from structural transformations produced by protons at the nanodiamond/matrix interface.

SELECTION OF CITATIONS
SEARCH DETAIL
...