Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 10(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786713

ABSTRACT

Seed infection caused by Fusarium spp. is one of the major threats to the seed quality and yield of agricultural crops, including garden peas. The use of Bacillus spp. with multiple antagonistic and plant growth-promoting (PGP) abilities represents a potential disease control strategy. This study was performed to evaluate the biocontrol potential of new Bacillus spp. rhizosphere isolates against two Fusarium strains affecting garden peas. Six Bacillus isolates identified by 16S rDNA sequencing as B. velezensis (B42), B. subtilis (B43), B. mojavensis (B44, B46), B. amyloliquefaciens (B50), and B. halotolerans (B66) showed the highest in vitro inhibition of F. proliferatum PS1 and F. equiseti PS18 growth (over 40%). The selected Bacillus isolates possessed biosynthetic genes for endoglucanase (B42, B43, B50), surfactin (B43, B44, B46), fengycin (B44, B46), bacillomycin D (B42, B50), and iturin (B42), and were able to produce indole-3-acetic acid (IAA), siderophores, and cellulase. Two isolates, B. subtilis B43 and B. amyloliquefaciens B50, had the highest effect on final germination, shoot length, root length, shoot dry weight, root dry weight, and seedling vigor index of garden peas as compared to the control. Their individual or combined application reduced seed infection and increased seed germination in the presence of F. proliferatum PS1 and F. equiseti PS18, both after seed inoculation and seed bio-priming. The most promising results were obtained in the cases of the bacterial consortium, seed bio-priming, and the more pathogenic strain PS18. The novel Bacillus isolates may be potential biocontrol agents intended for the management of Fusarium seed-borne diseases.

2.
Plants (Basel) ; 13(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38202451

ABSTRACT

Maize is a globally significant cereal crop, contributing to the production of essential food products and serving as a pivotal resource for diverse industrial applications. This study investigated the proximate analysis of maize hybrids from different FAO maturity groups in Serbia, exploring variations in polyphenols, flavonoids, carotenoids, tocopherols, and fatty acids with the aim of understanding how agroecological conditions influence the nutritional potential of maize hybrids. The results indicate substantial variations in nutritional composition and antioxidant properties among different maturity groups. The levels of total polyphenols varied among FAO groups, indicating that specific hybrids may offer greater health benefits. Flavonoids and carotenoids also showed considerable variation, with implications for nutritional quality. Tocopherol content varied significantly, emphasizing the diversity in antioxidant capacity. Fatty acid analysis revealed high levels of unsaturated fatty acids, particularly linoleic acid, indicating favorable nutritional and industrial properties. The study highlights the importance of considering maturity groups in assessing the nutritional potential of maize hybrids.

3.
Glob Chang Biol ; 29(5): 1340-1358, 2023 03.
Article in English | MEDLINE | ID: mdl-36524285

ABSTRACT

The European Union is highly dependent on soybean imports from overseas to meet its protein demands. Individual Member States have been quick to declare self-sufficiency targets for plant-based proteins, but detailed strategies are still lacking. Rising global temperatures have painted an image of a bright future for soybean production in Europe, but emerging climatic risks such as drought have so far not been included in any of those outlooks. Here, we present simulations of future soybean production and the most prominent risk factors across Europe using an ensemble of climate and soybean growth models. Projections suggest a substantial increase in potential soybean production area and productivity in Central Europe, while southern European production would become increasingly dependent on supplementary irrigation. Average productivity would rise by 8.3% (RCP 4.5) to 8.7% (RCP 8.5) as a result of improved growing conditions (plant physiology benefiting from rising temperature and CO2 levels) and farmers adapting to them by using cultivars with longer phenological cycles. Suitable production area would rise by 31.4% (RCP 4.5) to 37.7% (RCP 8.5) by the mid-century, contributing considerably more than productivity increase to the production potential for closing the protein gap in Europe. While wet conditions at harvest and incidental cold spells are the current key challenges for extending soybean production, the models and climate data analysis anticipate that drought and heat will become the dominant limitations in the future. Breeding for heat-tolerant and water-efficient genotypes is needed to further improve soybean adaptation to changing climatic conditions.


Subject(s)
Droughts , Glycine max , Glycine max/genetics , Climate Change , Plant Breeding , Europe
4.
Foods ; 12(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38231708

ABSTRACT

Cereal products, such as flakes and snack items, are frequently consumed as part of everyday diets, encompassing ready-to-eat breakfast cereals, flakes, and snacks. The utilization of extrusion technology is crucial in the manufacturing process of cereal-based flakes or snack products. When it comes to cereal-based flakes or snacks, different types of corn, such as white corn, yellow corn, red corn, and black corn, have garnered attention from scientists, consumers, and experts in the food industry. This paper investigates the simultaneous effects of different types of corn (white corn, yellow corn, red corn, and black corn) addition and different screw speeds (350, 500, 650 rpm) on the physical, technological, and functional properties of flake products. An increasing screw speed had a positive influence on the physical and technological characteristics of corn flakes, while different types of corn had a positive influence on the mineral composition and antioxidant properties. Black corn flour and a screw speed of 350 rpm positively influenced the physical and technological characteristics, mineral composition, and antioxidant properties of flake products, with a best total Z-score analysis of 0.59. Overall, the combination of Tukey's HSD test and PCA enabled a comprehensive analysis of the observed corn products and allowed us to identify satiating and significant differences between attributes and create a classification of the samples based on those differences. Corn flakes from black corn flour on a screw speed of 350 rpm is a new product with good physical-technological and functional properties due to a higher level of antioxidant activity. The last three samples have a significantly higher percentage of free radical inhibition compared with the other samples according to TPC and TFC. This product has the potential to be found on the market as a new product with functional properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...