Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Pharmacol ; 67(1): 117-25, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25244603

ABSTRACT

OBJECTIVES: Although the exact underlying mechanisms are still unknown, Plantago lanceolata L. (PL) water extracts are frequently used to stimulate wound healing and to drain abscesses. Therefore, in this experimental study the effect of PL water extract on skin wound healing was studied in Sprague-Dawley rats. METHODS: Two excisional and one incisional skin wounds were performed on the back of each rat. Wounds were treated for three consecutive days with two different concentrations of the aqueous extract of PL. Rats were sacrificed 7, 14, and 21 days after surgery. Samples of wounds were processed for macroscopic (excisions - wound contraction measurement), biomechanical (incisions - wound tensile strength (TS) measurement) and histological examination (excisions). KEY FINDINGS: It was shown that open wounds treated with PL extract contained myofibroblasts and demonstrated significantly higher contraction rates. Furthermore, significantly increased wound TSs were recorded in treated rats as a consequence of increased organization of extracellular matrix proteins, such as the collagen type 1. CONCLUSIONS: We demonstrated that PL aqueous extract improves skin wound healing in rats. However, further research need to be performed to find optimal therapeutic concentration, and exact underlying mechanism prior obtained results may be introduced into the clinical practice.


Subject(s)
Myofibroblasts/metabolism , Plant Extracts/pharmacology , Plantago , Wound Healing/drug effects , Animals , Dose-Response Relationship, Drug , Male , Rats , Rats, Sprague-Dawley , Tensile Strength
2.
Photomed Laser Surg ; 32(4): 198-204, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24661084

ABSTRACT

OBJECTIVE: The aim of present study was to evaluate whether low-level laser therapy (LLLT) can reverse the impaired wound healing process in diabetic rats. BACKGROUND DATA: Impaired wound healing in diabetic patients represents a major health problem. Recent studies have indicated that LLLT may improve wound healing in diabetic rats, but the optimal treatment parameters are still unknown. MATERIALS AND METHODS: Male Sprague-Dawley rats (n=21) were randomly divided into three groups: a healthy control group, a diabetic sham-treated group, and a diabetic LLLT-treated group. Diabetes mellitus was then induced by streptozotocin administration to the two diabetic groups. One 4 cm long full thickness skin incision and one full thickness circular excision (diameter=4 mm) were performed on the back of each rat. An infrared 810 nm laser with an output of 30 mW, a power density of 30 mW/cm(2), and a spot size of 1 cm(2) was used to irradiate each wound for 30 sec (daily dose of 0.9 J/cm(2)/wound/day). RESULTS: In diabetic rats, the histology of LLLT-treated excisions revealed a similar healing response to that in nondiabetic controls, with significantly more mature granulation tissue than in the sham-treated diabetic control group. LLLT reduced the loss of tensile strength, and increased the incision wound stiffness significantly compared with sham-irradiated rats, but this did not achieve the same level as in the nondiabetic controls. CONCLUSIONS: Our study demonstrates that infrared LLLT can improve wound healing in diabetic rats. Nevertheless, further research needs to be performed to evaluate the exact underlying mechanism and to further optimize LLLT parameters for clinical use.


Subject(s)
Diabetes Mellitus, Experimental/complications , Low-Level Light Therapy , Skin/injuries , Wound Healing/radiation effects , Animals , Male , Rats , Rats, Sprague-Dawley , Skin/radiation effects , Streptozocin
SELECTION OF CITATIONS
SEARCH DETAIL
...