Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 9889, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31285482

ABSTRACT

Calcium/calmodulin-dependent protein kinase type II delta (CaMKIIδ), the predominant CaMKII isoform expressed in the heart, has been implicated in the progression of myocardial infarction- and pressure overload-induced pathological remodeling. However, the role of CaMKIIδ in volume overload (VO) has not been explored. We have previously reported an activation of CaMKII during transition to HF in long-term VO. Here, we address whether CaMKIIδ is critically involved in the mortality, myocardial remodeling, and heart failure (HF) progression in response to VO. CaMKIIδ knockout (δ-KO) and wild-type (WT) littermates were exposed to aortocaval shunt-induced VO, and the progression of adverse myocardial remodeling was assessed by serial echocardiography, histological and molecular analyses. The mortality rates during 10 weeks of VO were similar in δ-KO and WT mice. Both genotypes displayed comparable eccentric myocardial hypertrophy, altered left ventricle geometry, perturbed systolic and diastolic functions after shunt. Additionally, cardiomyocytes hypertrophy, augmented myocyte apoptosis, and up-regulation of hypertrophic genes were also not significantly different in δ-KO versus WT hearts after shunt. Therefore, CaMKIIδ signaling seems to be dispensable for the progression of VO-induced maladaptive cardiac remodeling. Accordingly, we hypothesize that CaMKIIδ-inhibition as a therapeutic approach might not be helpful in the context of VO-triggered HF.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium/metabolism , Myocardium/metabolism , Animals , Apoptosis/genetics , Cardiomegaly/genetics , Female , Gene Deletion , Heart Failure/genetics , Heart Failure/metabolism , Heart Ventricles/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Phosphorylation/genetics , Signal Transduction/genetics , Up-Regulation/genetics
2.
Kidney Int ; 91(3): 616-627, 2017 03.
Article in English | MEDLINE | ID: mdl-27927598

ABSTRACT

Chronic kidney disease (CKD) is associated with increased risk and worse prognosis of cardiovascular disease, including peripheral artery disease. An impaired angiogenic response to ischemia may contribute to poor outcomes of peripheral artery disease in patients with CKD. Hypoxia inducible factors (HIF) are master regulators of angiogenesis and therefore represent a promising target for therapeutic intervention. To test this we induced hind-limb ischemia in rats with CKD caused by 5/6 nephrectomy and administered two different treatments known to stabilize HIF protein in vivo: carbon monoxide and a pharmacological inhibitor of prolyl hydroxylation 2-(1-chloro-4- hydroxyisoquinoline-3-carboxamido) acetate (ICA). Expression levels of pro-angiogenic HIF target genes (Vegf, Vegf-r1, Vegf-r2, Ho-1) were measured by qRT-PCR. Capillary density was measured by CD31 immunofluorescence staining and HIF expression was evaluated by immunohistochemistry. Capillary density in ischemic skeletal muscle was significantly lower in CKD animals compared to sham controls. Rats with CKD showed significantly lower expression of HIF and all measured pro-angiogenic HIF target genes, including VEGF. Both HIF stabilizing treatments rescued HIF target gene expression in animals with CKD and led to significantly higher ischemia-induced capillary sprouting compared to untreated controls. ICA was effective regardless of whether it was administered before or after induction of ischemia and led to a HIF expression in skeletal muscle. Thus, impaired ischemia-induced angiogenesis in rats with CKD can be improved by HIF stabilization, even if started after onset of ischemia.


Subject(s)
Capillaries/drug effects , Carbon Monoxide/pharmacology , Glycine/analogs & derivatives , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Ischemia/drug therapy , Isoquinolines/pharmacology , Muscle, Skeletal/blood supply , Neovascularization, Physiologic/drug effects , Renal Insufficiency, Chronic/metabolism , Signal Transduction/drug effects , Animals , Capillaries/metabolism , Capillaries/physiopathology , Cell Line , Disease Models, Animal , Gene Expression Regulation , Glycine/pharmacology , Heme Oxygenase (Decyclizing)/genetics , Heme Oxygenase (Decyclizing)/metabolism , Hindlimb , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Ischemia/genetics , Ischemia/metabolism , Ischemia/physiopathology , Male , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Protein Stability , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/physiopathology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
3.
Hum Genet ; 135(7): 813-26, 2016 07.
Article in English | MEDLINE | ID: mdl-27138983

ABSTRACT

Molybdenum cofactor (MoCo) deficiency is a rare, autosomal-recessive disorder, mainly caused by mutations in MOCS1 (MoCo deficiency type A) or MOCS2 (MoCo deficiency type B) genes; the absence of active MoCo results in a deficiency in all MoCo-dependent enzymes. Patients with MoCo deficiency present with neonatal seizures, feeding difficulties, severe developmental delay, brain atrophy and early childhood death. Although substitution therapy with cyclic pyranopterin monophosphate (cPMP) has been successfully used in both Mocs1 knockout mice and in patients with MoCo deficiency type A, there is currently no Mocs2 knockout mouse and no curative therapy for patients with MoCo deficiency type B. Therefore, we generated and characterized a Mocs2-null mouse model of MoCo deficiency type B. Expression analyses of Mocs2 revealed a ubiquitous expression pattern; however, at the cellular level, specific cells show prominent Mocs2 expression, e.g., neuronal cells in cortex, hippocampus and brainstem. Phenotypic analyses demonstrated that Mocs2 knockout mice failed to thrive and died within 11 days after birth. None of the tested MoCo-dependent enzymes were active in Mocs2-deficient mice, leading to elevated concentrations of purines, such as hypoxanthine and xanthine, and non-detectable levels of uric acid in the serum and urine. Moreover, elevated concentrations of S-sulfocysteine were measured in the serum and urine. Increased levels of xanthine resulted in bladder and kidney stone formation, whereas increased concentrations of toxic sulfite triggered neuronal apoptosis. In conclusion, Mocs2-deficient mice recapitulate the severe phenotype observed in humans and can now serve as a model for preclinical therapeutic approaches for MoCo deficiency type B.


Subject(s)
Coenzymes/genetics , Metal Metabolism, Inborn Errors/genetics , Metalloproteins/genetics , Nuclear Proteins/genetics , Animals , Apoptosis/genetics , Carbon-Carbon Lyases , Coenzymes/biosynthesis , Cysteine/analogs & derivatives , Cysteine/urine , Disease Models, Animal , Gene Expression , Humans , Hypoxanthine/blood , Hypoxanthine/urine , Metal Metabolism, Inborn Errors/blood , Metal Metabolism, Inborn Errors/physiopathology , Metal Metabolism, Inborn Errors/urine , Metalloproteins/biosynthesis , Mice , Mice, Knockout , Molybdenum Cofactors , Mutation , Nuclear Proteins/biosynthesis , Phenotype , Pteridines , Xanthine/blood , Xanthine/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...