Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892598

ABSTRACT

Depressive disorders are heterogeneous in nature, and their global reach makes them the cause of suffering for a million individuals worldwide. Standard treatment does not work for one in three people, and side effects can significantly reduce the quality of life. A multidisciplinary approach allows for a broader insight into the nature of the disease, given its complex etiology. One of its elements is the hypothesis of inflammation, which also accompanies obesity-related disease. Obesity and depression interact, causing many researchers to develop new non-pharmacological treatment methods for both diseases. One suggestion is physical exercises that have great potential to be used in clinical practice. They can exert changes on the central nervous system and thus modulate mood. Another is diet, which concentrates on active molecules that also affect the central nervous system (CNS). There is an urgent need to create appropriate criteria and recommendations that systematize existing knowledge and allow it to be used in practice. There is an urgent need to create appropriate criteria and recommendations that systematize existing knowledge and allow it to be used in practice.


Subject(s)
Depressive Disorder , Obesity , Humans , Obesity/therapy , Depressive Disorder/therapy , Exercise , Inflammation , Quality of Life , Diet , Exercise Therapy/methods
2.
Nutrients ; 16(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276546

ABSTRACT

Many researchers propose manipulating microbiota to prevent and treat related diseases. The brain-gut axis is an object that remains the target of modern research, and it is not without reason that many researchers enrich it with microbiota and diet in its name. Numerous connections and mutual correlations have become the basis for seeking answers to many questions related to pathology as well as human physiology. Disorders of this homeostasis as well as dysbiosis itself accompany neurodegenerative diseases such as Alzheimer's and Parkinson's. Heavily dependent on external factors, modulation of the gut microbiome represents an opportunity to advance the treatment of neurodegenerative diseases. Probiotic interventions, synbiotic interventions, or fecal transplantation can undoubtedly support the biotherapeutic process. A special role is played by diet, which provides metabolites that directly affect the body and the microbiota. A holistic view of the human organism is therefore essential.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Microbiota , Parkinson Disease , Humans , Parkinson Disease/therapy , Diet , Dysbiosis , Brain
3.
Polymers (Basel) ; 15(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37447463

ABSTRACT

In this study, composites containing polylactide and carbonate lake sediment in concentrations of 2.5, 5, 10, and 15% by weight were prepared by a 3D printing method. The material for 3D printing was obtained by directly diluting the masterbatch on an injection moulder to the desired concentrations, and after granulation, it was extruded into a filament. The material prepared thusly was used to print standardised samples for mechanical testing. To compare the mechanical properties of the composites obtained by 3D printing and injection moulding, two sets of tests were performed, i.e., mechanical tests (tensile strength, flexural strength, and impact strength) and hydrophobic-hydrophilic surface character testing. The degree of composite waste in the 3D printing was also calculated. Mechanical and surface tests were performed for both systems conditioned at room temperature and after accelerated ageing in a weathering chamber. The study showed differences in the properties of composites obtained by 3D printing. Sedimentary fillers improved the hydrophobicity of the systems compared with pure PLA, but it was not a linear relationship. The PLA/CLS sedB composite had higher strength parameters, especially after ageing in a weathering chamber. This is due to its composition, in which, in addition to calcite and silica, there are also aluminosilicates, causing a strengthening of the PLA matrix.

4.
Materials (Basel) ; 15(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35009483

ABSTRACT

This paper presents the impact of accelerated aging on selected mechanical and thermal properties of isotactic polypropylene (iPP) composites filled with sedimentary hybrid natural filler-Opoka rock. The filler was used in two forms: an industrial raw material originating as a subsieve fraction natural material, and a rock calcinated at 1000 °C for production of phosphorous sorbents. Fillers were incorporated with constant amount of 5 wt % of the resulting composite, and the material was subjected to accelerated weathering tests with different exposition times. The neat polypropylene and composites with calcium carbonate as a reference filler material were used for comparison. The aim of the research was to determine the possibility of using the Opoka rock as a new hybrid filler for polypropylene, which could be an alternative to the widely used calcium carbonate and silica. The thermal, mechanical, and structural properties were evaluated by means of differential scanning calorimetry (DSC), tensile tests, scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR/ATR) prior to and after accelerated aging. As a result, it was found that the composites of polypropylene with Opoka were characterized by similar or higher functional properties and higher resistance to photodegradation compared to composites with conventional calcium carbonate. The results of measurements of mechanical properties, structural and surface changes, and the carbonyl index as a function of accelerated aging proved that Opoka was an effective ultraviolet (UV) stabilizer, significantly exceeding the reference calcium carbonate in this respect. The new hybrid filler of natural origin in the form of Opoka can therefore be used not only as a typical powder filler, but above all as a UV blocker/stabilizer, thus extending the life of polypropylene composites, especially for outdoor applications.

5.
Polymers (Basel) ; 12(10)2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33023079

ABSTRACT

In this work, polyethylene (PE) composites were prepared with a series of completely condensed silsesquioxanes (SSQ), as well as with open-cage hepta(isobutyl)trisilanol silsesquioxane. The effect of the additives on the thermal, mechanical, rheological, and crystalline properties of the composites obtained was determined. The dispersion of trisilanol derivative within polymer matrix was slightly better than that of the other isobutyl compounds, suggesting condensation of the additive to less polar products of different structure, which was confirmed by thermogravimetry (TG) and matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry analysis. The additives improved the thermal stability of polyethylene and formed composites of higher rigidity than the neat polyolefin. The results were compared to the literature data, with aminopropylhepta(isobutyl)silsesquioxane and vinylhepta(isobutyl)silsesquioxane being used partially as references, as PE composites thereof were reported earlier, but lacked some analytical results and required further investigation. It was proven that the practical upper loading limit for such silsesquioxane compounds as processing and functional additives for polyethylene should be fixed at around 1%.

6.
Materials (Basel) ; 13(13)2020 Jul 05.
Article in English | MEDLINE | ID: mdl-32635664

ABSTRACT

A series of cresol-based benzoxazines were synthesized for potential application as a polymer matrix in abrasive composites. The chemical structures of the obtained benzoxazine resins were investigated in detail using Fourier transform infrared spectroscopy (FTIR) and hydrogen-1 as well as carbon-13 nuclear magnetic resonance spectroscopy (1H NMR, 13C NMR) with an additional analysis using two-dimensional NMR techniques (2D NMR 1H-1H COSY, 1H-13C gHSQC and gHMBC). Structural analysis confirmed the presence of vibrations of -O-C-N- at ~950 cm-1 wavenumber, characteristic for an oxazine ring. The thermal properties of benzoxazine monomers were examined using differential scanning calorimetry (DSC) analysis. The polymerization enthalpy varied from 143.2 J/g to 287.8 J/g. Thermal stability of cresol-based benzoxazines was determined using thermogravimetry (TGA) analysis with additional analysis of the amount of volatile organic compounds (VOC) emitted from the synthesized benzoxazines during their crosslinking by static headspace coupled with gas chromatography technique (HS-GC). The amount of residual mass significantly differed between all synthesized polybenzoxazines in the range from 8.4% to 21.2%. The total VOC emission for benzoxazines decreased by 46-77% in reference to a conventional phenolic binder. The efficiency of abrasive composites with the benzoxazine matrix was evaluated based on abrasion tests. Performed analyses confirmed successful synthesis and proper chemical structure of cresol-based benzoxazines. All the experiments indicated that benzoxazines based on different cresol isomers significantly differ from each other. Good thermal performance and stability of the abrasive composites with the polybenzoxazine matrix and significantly lower VOC emission allow us to state that benzoxazines can be a promising and valuable alternative to the phenolics and a new path for the development of modern, eco-friendly abrasives.

7.
Int J Biol Macromol ; 161: 531-538, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32535202

ABSTRACT

Lignin-Al2O3 hybrids were tested as effective additives for application in abrasive materials. The main focus was on the reduction of environmental pollution. The emission of volatile compounds, mainly phenol and formaldehyde, was investigated using detailed evolved gas analysis (EGA) performed by means of mass spectroscopy (QMS) in combined differential scanning calorimetry (DSC) and thermogravimetry (TG) analysis. It was established that the addition of lignin-Al2O3 hybrid additives can reduce the emission of phenol and formaldehyde. Crucially, free phenol emission was not detected from the lignin-Al2O3 additives or from lignin itself using the TG-MS method. Moreover, the addition of lignin-type fillers to phenolic composites can lower emissions of the two aforementioned compounds. No emission of other toxic compounds was detected. The mechanical properties of the lignin-alumina hybrids and resin systems were investigated using the three-point flexural test (also as an element of an ageing test), a compressive test, and testing of abrasibility. The results indicate that the lignin and alumina used as a hybrid additive for abrasive materials improve the adhesion between the binder and abrasive grain, and increase the flexibility of the composites, which has a positive impact on the performance of the final products.


Subject(s)
Aluminum Oxide/chemistry , Lignin/chemistry , Calorimetry, Differential Scanning/methods , Formaldehyde/chemistry , Mass Spectrometry/methods , Phenol/chemistry , Thermogravimetry/methods
8.
Int J Biol Macromol ; 122: 88-94, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30393140

ABSTRACT

In this study, the kraft lignin/cubic boron nitride hybrid materials have been obtained and characterized for the first time. The effectiveness of the combination of lignin and boron nitride was evaluated on the basis of Fourier transform infrared spectroscopy. Furthermore, it was confirmed that the addition of cubic boron nitride (cBN) improved the thermal stability of the inorganic-organic material. Upswing in thermal properties allowed to apply the prepared materials in preparation of model abrasive composites. Beneficial influence of the lignin/cBN filler was also proven by a noticeable decrease in the amount of harmful phenol released from the compositions during headspace gas chromatography analysis. Mechanical properties of the lignin/boron nitride hybrids and resin systems were investigated by the three-point flexural test. The obtained results show that the used additives can be promising materials for abrasive tools combining the good properties of lignin as a plasticizer and of cubic boron nitride as a filler which improves the thermal and mechanical properties of finished products and, at the same time, limits the negative impact on human health and environment.


Subject(s)
Boron Compounds/chemistry , Lignin/chemistry , Mechanical Phenomena , Phenols/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...